Логарифмические поправки к формуле Бекенштейна — Хокинга и петлевая квантовая гравитация. Петлевая квантовая теория Что ты думаешь о теории струн

С 80-х годов прошлого века разрабатывается парадигма описания того, что происходило в самом начале Вселенной. Используя математический аппарат, получивший название петлевой квантовой космологии (упрощение петлевой квантовой гравитации), можно надеяться описать происходившее во Вселенной намного дальше, чем позволяет классическая квантовая теория - возможно, до самого момента Большого взрыва . В качестве такого универсального аппарата, соединяющего квантовую механику и теорию относительности, петелевая модель имеет основного конкурента в лице теории стру н. Эта теория имеет значение и для того, что мы видим сейчас. Согласно ее результатам, все современные крупные структуры во Вселенной имеют начало в квантовых флуктуациях пространства-времени, имевших место при рождении мира. В эту теорию могут вписываться частные теории, касающиеся конкретных событий - например, теория Большого взрыва, и с помощью нового математического аппарата и грядущих улучшений в возможностях наблюдательной астрономии можно ожидать уточнения и проверки современных теорий космологии.

«Мы, люди, всегда стремились как можно больше понять в строении и эволюции Вселенной, - говорит первый автор публикации работы Абай Аштекар . - Так что для нашей группы сейчас наступает очень интересное время, ведь с помощью нашей новой модели мы теперь можем в деталях изучить, что творилось с материей и геометрией пространства-времени в ходе первых моментов Вселенной, а может, и в самом ее начале». Аштекар - директор Института гравитации и космоса Университета, соавторами работы являются Иван Агулло и Уильям Нельсон.

Новая парадигма дает концептуальный и математический аппарат для описания экзотического состояния пространства-времени в начале Вселенной. В первую очередь, согласно новой модели, Вселенная была сжата до невероятных плотностей - около десяти в девяноста четвертой степени грамм на кубический сантиметр. При таких плотностях поведение Вселенной, конечно, описывалось не классической физикой и даже не общей теорией относительности Эйнштейна . Вместо этого предлагается новая фундаментальная теория, включающая в себя квантовую механику. В таких квантовомеханических условиях, когда можно говорить лишь о вероятностях событий, физические свойства материи должны сильно отличаться от того, с чем мы привыкли сталкиваться в повседневных ситуациях. Среди основных отличий - даже понятие времени.

Для современных наблюдений такие условиях не менее недоступны, чем для обыденного понимания. Только несколько астрономических результатов подбираются близко к далеким временам рождения Вселенной. Реликтовое излучение удалось увидеть для тех времен, когда возраст мира составлял всего 380 тысяч лет. К этому моменту, после инфляции - периода очень быстрого расширения - Вселенная стала намного больше, чем при рождении, и уже не представляла собой парадоксального с точки зрения физики явления. А ведь даже в начале инфляции плотность Вселенной была в миллиарды раз меньше, чем в первые мгновения и ее поведение описывалось уже не квантовой механикой. Так что все наши знания о первых моментах Вселенной, когда ее свойства были экстремальны, исходят из наблюдений более поздних эпох, когда ее свойства были уже регулярны.

Наблюдения реликтового излучения показывают, что Вселенная после инфляции в основном равномерна, и только в некоторых областях наблюдаются искажения реликтового излучения. Эти области были до инфляции либо заметно более плотными, либо менее плотными. «Инфляционная парадигма имеет большой успех, ведь она объясняет видимую структуру реликтового излучения. Но эта модель не полна. Она исходит из того, что Вселенная начала появляться из ничего после Большого взрыва, что на самом деле объясняется лишь неспособностью стандартного подхода объяснить экстремальные квантовомеханические условия, - говорит Агулло. - Необходима квантовая теория гравитации, например, петлевая квантовая космология, чтобы выйти за пределы, накладываемые теорией Эйнштейна и описать физические процессы, происходившие при рождении Вселенной». Прошлые работы группы Аштекара уже позволили выдвинуть теорию измененного Большого взрыва, в которой наша Вселенная возникла не из ничего, но из чрезвычайно сжатой материи, которая и до этого могла иметь какую-то историю.

Несмотря на то, что условия, описываемые квантовой механикой и относящиеся к моменту рождения Вселенной разительно отличаются от условий, описываемых теорией относительности и относящихся к времени после инфляции, существует связь между моделями, описывающими эти две эры. Используя оба математических аппарата, сотрудники Университета смогли показать, как из мест, выделяющихся на общем фоне реликтового излучения флуктуациями плотности материи, затем выросли скопления галактик и все крупные структуры, видимые нами сейчас. Что еще интереснее, математический аппарат петлевой квантовой космологии позволяет получить те самые особенности реликтового излучения из флуктуаций, относящихся к самому началу Вселенной. «Наша работа отодвигает границу знаний о происходившем со Вселенной до самого Большого взрыва, увеличивая предел достижимой для изучения плотности материи на 11 порядков, - говорит Нельсон. - Мы сумели сузить рамки, в которых находились начальные условия при взрыве, а также показали, что эти начальные условия находятся в согласии с особенностями реликтового излучения». В некоторых частях новая теория расходится со стандартными предположениями теорий Большого взрыва и инфляции, что позволит сравнить их. С текущим уровнем наблюдений это, правда, невозможно.

Петлевая квантовая гравитация - что это такое? Именно этот вопрос мы рассмотрим в данной статье. Для начала определим ее характеристику и фактические сведения, а далее ознакомимся с ее оппонентом - теорией струн, которую мы рассмотрим в общем виде для осмысления и взаимосвязи с петлевой квантовой гравитацией.

Введение

Одной из теорий, описывающих квантовую гравитацию, является набор данных о петлевой гравитации на квантовом уровне организации Вселенной. Данные теории основываются на концепции дискретности, как времени, так и пространства в масштабах Планка. Позволяет реализоваться гипотезе пульсирующей Вселенной.

Ли Смолин, Т. Джекобсон, К. Ровелли, и А. Аштекар являются основателями теории петлевой квантовой гравитации. Начало ее формирования приходится на 80-е гг. ХХ века. В соответствии с утверждениями данной теории, «ресурсы» - время и пространство - это системы из дискретных фрагментов. Они описываются как ячейки размером с кванты, которые скрепляются между собой особым способом. Однако, доходя до больших размеров, мы наблюдаем сглаживание пространства-времени, и оно нам кажется непрерывным.

Петлевая гравитация и частички мироздания

Одной из самых ярких «особенностей» теории петлевой квантовой гравитации является ее естественная способность решения некоторых проблем физики. Она позволяет объяснять немало вопросов, связанных со стандартной моделью физики элементарных частичек.

В 2005 году вышла статья С. Бильсона-Томпсона, который предлагал в ней модель с трансформированным ришоном Харари, который принял вид протяженного ленточного объекта. Последний называют риббоном. Оценивающийся потенциал говорит о том, что она могла бы объяснить причину самостоятельной организации всех субкомпонентов. Ведь именно это явление вызывает цветовой заряд. Предыдущая преонная модель для себя считала базовым элементом точечные частицы. Заряд цвета поддавался постулированию. Эта модель позволяет описывать электрические заряды как топологическую сущность, что способна возникнуть в случае перекручивания риббонов.

Вторая статья этих соавторов, выпущенная в 2006 г., является трудом, в котором также принимали участие Л. Смолин и Ф. Маркополу. Ученые выдвинули предположение о том, что все теории квантовой петлевой гравитации, входящие в класс петлевых, утверждают: в них пространство и время - это возбужденные квантованием состояния. Эти состояния могут выполнять роли преонов, которые приводят к появлению известной стандартной модели. Ею в свою очередь обуславливается эмергентность свойств теории.

Четверо ученых также выдвинули предположение о том, что теория квантовой петлевой гравитации способна воспроизводить Стандартную модель. Она автоматическим способом взаимно связывает четыре фундаментальные силы. В таком виде, под понятием «брэд» (переплетенное волокнистое пространство-время), здесь подразумевается понятие преонов. Именно брэды дают возможность воссоздать верную модель из представителей «первого поколения» частиц, что основана на фермионах (кварках и лептонах) с преимущественно правильными способами воссоздания заряда и четности собственно самих фермионов.

Бильсон-Томпсон предполагал, что фермионы из фундаментального «ряда» 2-го и 3-го поколений могут представляться в виде тех же брэдов, но с более сложной структурой. Фермионы 1-го поколения здесь представлены простейшими брэдами. Однако здесь важно знать, что конкретные представления о сложности их устройства еще не выдвигались. Полагается, что заряды цветового и электрического типов, а также «статус» четности частичек у первого поколения, формируются точно таким же образом, как и у других. После того, как эти частицы были открыты, было совершено множество опытов по созданию воздействий квантовыми флуктуациями на них. Конечные результаты экспериментов показали, что эти частички являются устойчивыми и не распадаются.

Ленточная структура

Так как здесь мы рассматриваем информацию о теориях без использования расчетов, то можно сказать, что это петлевая квантовая гравитация «для чайников». И она не может обойтись без описания ленточных структур.

Сущности, в которых материя представлена тем же «веществом», что и пространство-время, являются общим описательным представлением модели, которую нам представили Бильсон-Томпсон. Эти сущности являются ленточными структурами данной описательной характеристики. Эта модель показывает нам, как происходит получение фермионов и как образуются бозоны. Однако она не дает ответа на вопрос о том, каким образом можно получить бозон Хигса с применением брэндинга.

Л. Фрейделем, Дж. Ковальским-Гликманом и А. Стародубцевым в 2006 году в одной статье было высказано предположение о том, что линиями Вильсона гравитационных полей можно описывать элементарные частички. Это подразумевает, что свойства, которыми обладают частички, способны соответствовать качественным параметрам петель Вильсона. Последние в свою очередь являются базовым объектом петлевой квантовой гравитации. Еще эти исследования и расчеты рассматривается в качестве дополнительной базы для теоретической поддержки, описывающей модели Бильсона-Томпсона.

Использование формализма модели спиновой пены, обладающей непосредственным отношением к теории, изучаемой и анализируемой в этой статье (Т.П.К.Г.), а также базирование на исходном ряде принципов этой теории квантовой петлевой гравитации, дает возможность воспроизводить некоторые частички Стандартной модели, которые не могли получить ранее. Это были фотонные частицы, также глюоны и гравитоны.

Существует также модель гелонов, в которой брэды не рассматривают ввиду их отсутствия как таковых. Но сама модель не дает точной возможности отрицать их существование. Ее преимущество заключается в том, что мы можем описывать бозон Хиггса как некую композитную систему. Это объясняется наличием у частиц с большим значением массы более сложных внутренних структур. Учитывая перекручивание брэдов, мы вправе предположить, что данная структура может относиться к механизму создания массы. Например, вид модели Бильсона-Томпсона, описывающий фотон как частицу с нулевой массой, соответствует состоянию брэда в не перекрученном состоянии.

Понимание подхода Бильсона-Томпсона

На лекциях по квантовой петлевой гравитации при описании лучшего подхода к пониманию модели Бильсона-Томпсона упоминают, что это описание преонной модели элементарных частиц позволяет охарактеризовать электроны как функции волновой природы. Дело в том, что общее количество квантовых состояний, которыми обладают спиновые пены с когерентными фазами, также может быть описано с использованием терминов В настоящее время происходят активные работы, направленные на объединение теории элементарных частичек и Т.П.К.Г.

Среди книг по петлевой квантовой гравитации найти множество информации можно, например, в трудах О. Фейрина о парадоксах квантового мира. Среди других работ стоит уделить внимание статьям Ли Смолина.

Проблематика

Статья в модифицированной версии от Бильсона-Томпсона признает, что спектр массы частиц является нерешенной проблемой, которую его модель описать не может. Также она не решает вопросы, связанные со спинами, смешиванием Кабиббо. Она требует привязки к более фундаментальной теории. Более поздние варианты статьи прибегают к описанию динамики брэдов при помощи перехода Пачнера.

В мире физики происходит постоянное противоборство: теория струн vs теория петлевой квантовой гравитации. Это два фундаментальных труда, над которыми работали и работают множество известных ученых всего мира.

Теория струн

Говоря о теории квантовой петлевой гравитации и теории струн, важно понимать, что это два абсолютно разных способа осознания устройства материи и энергии во Вселенной.

Теория струн - это «путь эволюции» физической науки, который старается изучить динамику взаимных действий не между точечными частицами, а квантовыми струнами. Материал теории сочетает в себе идею механики квантового мира и теорию относительности. Это, вероятно, поможет человеку построить будущую теорию квантовой гравитации. Именно ввиду формы объекта изучения эта теория старается другим способом описать основы Вселенной.

В отличие от теории квантовой петлевой гравитации, теория струн и ее основы базируются на гипотетических данных, предполагающих, что любая элементарная частица и все ее взаимодействия фундаментального характера являются следствием колебаний квантовых струн. Эти «элементы» Вселенной обладают ультрамикроскопическими размерами и в масштабах порядка длинны Планка равны 10 -35 м.

Данные этой теории являются математически осмысленными довольно точно, однако найти фактические подтверждения в области экспериментов она еще не смогла. Теория струн связана с мультивселенными, которые являются интерпретацией информации в бесконечном количестве миров с разным видом и формой развития абсолютно всего.

Основа

Петлевая квантовая гравитация или Это довольно важный вопрос, который сложно, но нужно осмыслить. Особенно это важно для физиков. Чтобы лучше понять теорию струн, важно будет кое-что знать.

Теория струн могла бы нам представить описание перехода и всех особенностей каждой фундаментальной частицы, однако это возможно лишь в том случае, если бы мы также могли экстраполировать струны в низкоэнергетическую область физики. В подобном случае все эти частички принимали бы вид ограничений на спектр возбуждения в нелокальном одномерном объективе, которых безграничное множество. Характерной размерностью струн является крайне малое значение (порядка 10 -33 м). Ввиду этого человек не способен наблюдать их в ходе экспериментов. Аналог данного явления - это струнное колебание музыкальных инструментов. Спектральные данные, которые "образуют" струну, возможными могут быть лишь для определенной частоты. С увеличением частоты растет и энергия (накопленная от колебаний). Если применить к этому утверждению формулу E = mc 2 , то можно создать описание материи, из которой состоит Вселенная. Теория постулирует, что размеры массы частицы, которые проявляют себя в виде колеблющейся струны, наблюдаются в реальном мире.

Струнная физика оставляет открытым вопрос о размерностях пространства-времени. Отсутствие дополнительных пространственных измерений в макроскопическом мире объясняется двумя путями:

  1. Компактификацией измерений, которые скручиваются до размеров, в которых они будут соответствовать порядку планковской длины;
  2. Локализацией всего количества частиц, которые образуют многомерную Вселенную на четырехмерном «листе Мира», который описывают как мультивселенную.

Квантование

В этой статье рассмотрено понятие теории петлевой квантовой гравитации для чайников. Данная тема является крайне сложной для осмысления на математическом уровне. Здесь же мы рассматриваем общее представление на основе описательного подхода. Причем по отношению к двум «противостоящим» теориям.

Чтобы осмыслить теорию струн лучше, также важно знать о существовании подхода первичного и вторичного квантования.

Вторичное квантование основывается на понятиях струнного поля, а именно на функционале для пространства петель, что похоже на квантовую теорию поля. Формализмы первичного подхода посредством математических приемов создают описание движения пробных струн в их внешних полях. Это не сказывается отрицательным образом на взаимодействии между струнами, а также включает в себя явление распада и объединения струн. Первичный подход - это связующее звено между струнными теориями и утверждениями обычной теорией полей на мировой поверхности.

Суперсимметрия

Самым важным и обязательным, а также реалистичным «элементом» теории струн является суперсимметрия. Общий набор частичек и взаимодействия между ними, которые наблюдаются при относительно низких энергиях, способен воспроизвести структурную составную стандартной модели практически во всем виде. Множество свойств стандартной модели приобретает изящные объяснения в раках суперструнной теории, что также является важным аргументом для теории. Однако еще не существует принципов, которые могли бы объяснить то или иное ограничение струнных теорий. Эти постулаты должны позволять получать форму мира, подобную стандартной модели.

Свойства

Самыми важными свойствами струнной теории являются следующие:

  1. Принципы, обуславливающие устройство Вселенной - это гравитация и механика квантового мира. Они являются компонентами, которые нельзя разделять при создании общей теории. Теория струн реализует данное предположение.
  2. Исследования множества развитых концепций ХХ века, которые позволяют нам понимать фундаментальное устройство мира, всем множеством своих принципов работы и объяснения, объединяются и вытекают из теории струн.
  3. Теория струн не обладает свободными параметрами, которые необходимо подгонять для обеспечения согласия, как, например, это требуется в стандартной модели.

В заключение

Говоря простым языком, квантовая петлевая гравитация - это один из способов восприятия реальности, который старается описать фундаментальное устройство мира на уровне элементарных частиц. Она позволяет решать множество проблем физики, которые затрагивают вопросы организации материи, а также относится к одной из ведущих теорий во всем мире. Ее главным оппонентом является теория струн, что вполне логично, учитывая множество верных утверждений последней. Обе теории находят свое подтверждение в различных областях исследования элементарных частиц, а попытки объединить «квантовый мир» и гравитацию по сей день продолжаются.

Физик-теоретик Сабина Хоссенфельдер из Стокгольма посчитала двух альтернативных претендентов на «теорию всего» (теорию струн и петлевую квантовую гравитацию) сторонами одной медали. По ее мнению, в настоящее время петлевая квантовая гравитация достигла большого прогресса. Об этом ученый рассказала на страницах онлайн-издания Quanta Magazine.

Теория струн

Тео?рия струн - направление теоретической физики, изучающее динамику взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации.

Теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10?35 м. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени. Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано, связанных со струнными моделями строения адронов. Середина 1980-х и середина 1990-х ознаменовались бурным развитием теории струн, ожидалось, что в ближайшее время на основе теории струн будет сформулирована так называемая «единая теория», или «теория всего», поискам которой Эйнштейн безуспешно посвятил десятилетия. Но, несмотря на математическую строгость и целостность теории, пока не найдены варианты экспериментального подтверждения теории струн. Возникшая для описания адронной физики, но не вполне подошедшая для этого, теория оказалась в своего рода экспериментальном вакууме описания всех взаимодействий.

Одна из основных проблем при попытке описать процедуру редукции струнных теорий из размерности 26 или 10 в низкоэнергетическую физику размерности 4 заключается в большом количестве вариантов компактификаций дополнительных измерений на многообразия Калаби - Яу и на орбифолды, которые, вероятно, являются частными предельными случаями пространств Калаби - Яу. Большое число возможных решений с конца 1970-х и начала 1980-х годов создало проблему, известную под названием «проблема ландшафта», в связи с чем некоторые учёные сомневаются, заслуживает ли теория струн статуса научной.

Несмотря на эти трудности, разработка теории струн стимулировала развитие математических формализмов, в основном - алгебраической и дифференциальной геометрии, топологии, а также позволила глубже понять структуру предшествующих ей теорий квантовой гравитации. Развитие теории струн продолжается, и есть надежда, что недостающие элементы струнных теорий и соответствующие феномены будут найдены в ближайшем будущем, в том числе в результате экспериментов на Большом адронном коллайдере.

Теория петлевой квантовой гравитации

Петлевая квантовая гравитация - одна из теорий квантовой гравитации.

В теории квантовой гравитации привычное нам гладкое и непрерывное пространство на сверхмалых масштабах оказывается структурой с очень сложной геометрией.

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

В своей статье 2005 года, С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель - гелонной. Данная модель приводит к интерпретации электрического заряда как топологической сущности, возникающей при перекручивании риббонов.

Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу (Fotini Markopolou) и Л. Смолиным (Lee Smolin) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации.

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей.

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций.

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время. Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны, вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса, в них не обсуждается.

Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона - базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона.

Используя формализм модели спиновой пены, имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны, глюоны и гравитоны - независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо?льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены, фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон, описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований.

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью, отмечая, что, хотя его модель и была инспирирована преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория. Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Как сообщает Хоссенфельдер, расширения петлевой квантовой гравитации в высших измерениях включают в себя, подобно теории струн, суперсимметрию. Для того, чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, первая, как полагает Родольфо Гамбини из Уругвая, требует введения взаимодействий, похожих на таковые в теории струн.

Герман Верлинде из Принстонского университета полагает, что петлевая квантовая гравитация может помочь достичь прогресса в понимании идеи AdS/CFT-соответствия (anti-de Sitter / conformal field theory correspondence) между конформной теорией поля и гравитацией. В своей недавней работе, как сообщает Хоссенфельдер, физик при помощи методов петлевой квантовой гравитации описал трехмерное пространство-время (в котором две координаты пространственные и одна - временная).

В настоящее время над теорией струн работают несколько тысяч физиков-теоретиков. Над петлевой квантовой гравитацией - в сотни раз меньшее число специалистов. Большинство струнных теоретиков не воспринимают всерьез петлевую квантовую гравитацию. Теория струн основана на предположении существования на планковских масштабах гипотетических одномерных объектов - струн, возбуждения которых интерпретируются как элементарные частицы и их взаимодействия.

Эта теория является последовательным развитием квантовой теории поля, которая в настоящее время является математическим аппаратом для современной физики элементарных частиц - Стандартной модели. В отличие от теории струн, петлевая квантовая гравитация предполагает существование дискретной сетки пространства-времени, образованной квантовыми ячейками. Динамика этих ячеек определяет структуру пространства-времени.

Предлагаем вам посмотреть дебаты физиков, защищающих противоположную их специализации теорию:

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Просмотры: 227

История возникновения

Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин , Абэй Аштекар , Тэд Джекобсон (англ. ) и Карло Ровелли (англ. ). Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время .

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия . При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей .

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций .

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время . Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны , вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса , в них не обсуждается.

Л. Фрейдель (L. Freidel ), Дж. Ковальский-Гликман (J. Kowalski-Glikman ) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона - базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона .

Используя формализм модели спиновой пены , имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны , глюоны и гравитоны - независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены , фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон , описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований .

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью , отмечая, что, хотя его модель и была инспирирована преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальные теориях, таких как, например, М-теория . Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). В модифицированной версии его статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины , смешивание Кабиббо , а также необходимость привязки его модели к более фундаментальным теориям. Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

В более позднем варианте статьи описывается динамика брэдов с помощью переходов Пачнера (англ. Pachner moves ).

См. также

Источники и иллюстрации

  • «Что было до Большого взрыва и откуда взялось время» , «Элементы большой науки»

Литература

  • Lee Smolin, Three Roads to Quantum Gravity , Basic Books, 2001.
  • John Baez, The Quantum of Area? , Nature, vol.421, pp. 702-703; February 2003.
  • Lee Smolin, How Far Are We from the Quantum Theory of Gravity? , arxiv.org/hep-th/0303185.
  • Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27-50; November 2003.

Примечания

Теории гравитации
Стандартные теории гравитации Альтернативные теории гравитации Квантовые теории гравитации Единые теории поля
Классическая физика
  • Общая теория относительности
    Математическая формулировка общей теории относительности
    Гамильтонова формулировка общей теории относительности

Принципы

  • Геометродинамика (англ. )
Классические

Релятивистские

  • Теория гравитации Уайтхеда (англ. )
  • Теория Эйнштейна - Картана
  • Петлевая квантовая гравитация
  • Полуклассическая гравитация (англ. )
  • Причинная динамическая триангуляция (англ. )
  • Уравнение Уилера - Девитта (англ. )
  • Индуцированная гравитация (англ. )
  • Некоммутативная геометрия (англ. )
Многомерные
  • Общая теория относительности в многомерном пространстве

Струнные

Прочие

«Within three pages, Sir Isaac Newton was explaining the law of gravitation to Mistress Gwyn, who had already hinted that she would like to do something in return

(A. Clarke, A Fall of Moondust )

Разумеется, я не могу оставить полностью непрокомментированной статью A. Sen «Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions» , о которой я узнал благодаря сайту Любоша Мотла , я постараюсь писать о том, о чём ЛМ не написал:) Помимо того статья интересна тем, что представляет результаты логарифмических петлевых поправок к формуле Бекенштейна - Хокинга для энтропии чёрной дыры

$$S=\frac{A}{4}\,$$

которые я не буду обсуждать, она также предъявляет полезное сравнение этих результатов с таковыми, полученными в области сомнительной деятельности, называемой петлевой квантовой гравитацией. Результат сравнения показывает, что петлевая квантовая гравитация предсказывает неверную логарифмическую поправку к формуле Бекенштейна - Хокинга. Вспоминая то, с каким подгоном даже формула Бекенштейна - Хокинга выводится в петлевой квантовой гравитации, можно смело утверждать, что петлевая квантовая гравитация - неправильная конструкция.

В целом, рассуждения проводятся следующим образом. Вы рассматриваете общее решение чёрной дыры в некотором пространстве времени. Чёрная дыра обладает массой M , зарядом Q , и угловым моментом J . Двум последним канонически сопряжены химический потенциал μ и угловая скорость вращения чёрной дыры ω . Можете считать, что у вас есть несколько зарядов и несколько хим-потенциалов, это непринципиально. Термодинамический потенциал даётся формулой

$$\Omega =E-TS+\omega J+\mu Q\,$$

где T = 1/β есть температура чёрной дыры.

Евклидова квантовая гравитация описывается функциональным интегралом,

$$Z(\beta,\,\omega,\,\mu)=\int D\Psi e^{-S_E[\Psi]}\,$$

где Ψ обозначает все присутствующие поля.

Но, с другой стороны, функциональный интеграл даёт выражение для большой статистической суммы, из которой можно посчитать термодинамический потенциал:

$$\Omega=-T\log Z\,.$$

В результате получаем формулу для энтропии чёрной дыры:

$$S(M,\,J,\,Q)=\log Z+\beta (M+\omega J+\mu Q)\,.$$

В классической гравитации Z это просто потенцированное с обратным знаком классическое действие, посчитанное на полях, удовлетворяющих классическим уравнениям движения,

$$Z_{cl}(\beta,\,\omega,\,\mu)= e^{-S_{cl}[\Psi_{cl}]}\,.$$

Далее, квантовые эффекты, учитывающие петли, меняют этот результат, в результате чего энтропия тоже получает поправки. Ведущая поправка оказывается пропорциональной площади горизонта чёрной дыры. Важен коэффициент. На примере чёрной дыры Шварцшильда: если a - это радиус чёрной дыры в единицах планковской длины, то поправка к энтропии в однопетлевом приближении равна

$$\Delta S\simeq 1.71\log a\,.$$

Петлевая квантовая гравитация предсказывает

$$\Delta S\simeq -2\log a\,.$$

Это совершенно разные результаты.