Хлоропласты. Что такое хлоропласт? Хлоропласты: строение и функции Что происходит в хлоропластах растительных клеток

Растительных клеток, известный как зеленые пластиды. Пластиды помогают хранить и собирать необходимые вещества для производства энергии. Хлоропласт содержит зеленый пигмент, называемый хлорофиллом, который поглощает световую энергию для процесса фотосинтеза. Следовательно, название хлоропласт указывает на то, что эти органеллы представляют собой хлорофиллсодержащие пластиды.

Подобно , хлоропласты имеют свою собственную ДНК, ответственны за производство энергии и воспроизводятся независимо от остальной части посредством процесса деления, подобного бактериальному бинарному делению. Они также ответственны за производство аминокислот и липидных компонентов, необходимых для производства хлоропластов. Хлоропласты также встречаются в клетках других фотосинтезирующих организмах, таких как водоросли.

Хлоропласт: структура

Схема строения хлоропласт

Хлоропласты обычно встречаются в охранных клетках, расположенных в листьях растений. Охранные клетки окружают крошечные поры, называемые устьицами, открывая и закрывая их, чтобы обеспечить необходимый для фотосинтеза газообмен. Хлоропласты и другие пластиды развиваются из клеток, называемых пропластидами, которые являются незрелыми, недифференцированными клетками, развивающимися в разные типы пластид. Пропластид, развивающийся в хлоропласт, осуществляет этот процесс только при свете. Хлоропласты содержат несколько различных структур, каждая из которых имеет специализированные функции. Основные структуры хлоропласта включают:

  • Мембрана - содержит внутренние и внешние липидные двухслойные оболочки, которые выступают в качестве защитных покрытий и сохраняют замкнутые структуры хлоропластов. Внутренняя отделяет строму от межмембранного пространства и регулирует прохождение молекул в/из хлоропласта.
  • Межмембранное пространство - пространство между внешней и внутренней мембранами.
  • Тилакоидная система - внутренняя система мембран, состоящая из сплющенных мешкообразных мембранных структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию.
  • Тилакоид с просветом (люменом) - отсек в каждом тилакоиде.
  • Грана - плотные слоистые стопки тилакоидных мешков (10-20), которые служат местами преобразования энергии света в химическую энергию.
  • Строма - плотная жидкость внутри хлоропласта, содержащая внутри оболочки, но вне тилакоидной мембраны. Здесь происходит конверсия углекислого газа в углеводы (сахара).
  • Хлорофилл - зеленый фотосинтетический пигмент в хлоропласт-гране, поглощающий световую энергию.

Хлоропласт: фотосинтез

При фотосинтезе энергия солнечного света преобразуется в химическую энергию. Химическая энергия хранится в виде глюкозы (сахара). Двуокись углерода, вода и солнечный свет используются для производства глюкозы, кислорода и воды. Фотосинтез происходит в два этапа: световая фаза и темновая фаза.

Световая фаза фотосинтеза протекает только при наличии света и происходит внутри хлоропластовой граны. Первичным пигментом, используемым для преобразования световой энергии в химическую, является хлорофилл а. Другие пигменты, участвующие в поглощении света, включают хлорофилл b, ксантофилл и каротин. Во время световой фазы, солнечный свет преобразуется в химическую энергию в виде АТФ (молекулы, содержащей свободную энергию) и НАДФ (молекула, несущая электроны высокой энергии).

И АТФ, и НАДФ используются во время темновой фазы для получения сахара. Темновая фаза фотосинтеза, также известная как этап фиксации углерода или цикл Кальвина. Реакции на этой стадии возникают в строме. Строма содержит ферменты, которые облегчают серию реакций, использующих АТФ, НАДФ и углекислый газ для получения сахара. Сахар может храниться в виде крахмала, используемого во время дыхания или при производстве целлюлозы.

фото­синтез протекает в специализированных органеллах клеток - хлоро­пластах. Хлоропласты высших растений имеют форму двояковы­пуклой линзы (диска), которая наиболее удобна для поглощения солнечных лучей. Их размеры, количество, расположение полностью отвечают назначению: как можно эффектив­нее поглощать солнечную энергию, как можно полнее усваивать углерод. Установ­лено, что количество хлоропластов в клетке измеряется десятка­ми. Это обеспечивает высокое содержание этих органелл на еди­ницу поверхности листа. Так, на 1 мм 2 листа фасоли приходится 283 тыс. хлоропластов, у подсолнечника - 465 тыс . Диаметр хло­ропластов в среднем 0,5-2 мкм .

Строение хлоропласта весьма сложное. По­добно ядру и митохондриям хлоропласт окружен оболочкой, со­стоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция - матрикс или строма , которую пронизывают мембраны - ламеллы (рис .). Ламеллы, соединен­ные друг с другом, образуют пузырьки - тилакоиды . Плотно прилегая друг к другу, тила­коиды образуют граны , которые различают даже под свето­вым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью меж­гранных тяжей - тилакоидов стромы.

Свойства хлоропластов : способны измененять ориентацию и перемещаться. Например, под влиянием яркого света хлоропласты поворачиваются узкой сто­роной диска к падающим лучам и перемещаются на боковые стенки клеток. Хлоропласты передвигаются в направлении более вы­сокой концентрации СО 2 в клетке. Днем они обычно вы­страиваются вдоль стенок, ночью опускаются на дно клетки.

Химический состав хлоропластов: воды - 75 %; 75-80 % общего количества сухих веществ составляют орг. соединения, 20-25 % -минеральные.

Структурной основой хлоропластов являются белки (50-55 % сухой массы),  половина из них составляют водорастворимые белки. Такое вы­сокое содержание белков объясняется их многообразными функ­циями в составе хлоропластов (структурные белки мембран, белки-ферменты, транспортные белки, сократительные белки, реценторные).

Важнейшей составной частью хлоропластов являются липиды , (30-40% сух. м.). Липиды хлоропластов представлены тремя группами соединений.

    Структурные компоненты мембран, которые представлены амфипатическими липоидами и отличаются высоким содержанием (более 50%) галактолипидов и сульфолипидов. Фосфолипидный состав характеризуется отсутствием фосфатидилэтаноламина и высоким содержанием фосфатидилглицерина (более 20 %). Свыше 60 % состава ЖК приходится на линолевую кислоту.

    Фотосинтетическне пигменты хлоропластов - гидрофобные вв-а, относящиеся к липоидам (в клеточном соке - водораствори­мые пигменты). Высшие растения содержат 2 формы зеленых пигментов: хлорофилл а и хлорофилл b и 2 формы желтых пигментов: каротины и ксантофиллы (каротиноиды). Хлорофиллы выполняет роль фотосенсибилизаторов , другие пигменты расширяют спектр действия фотосинтеза за счет более полного поглощения ФАР. Каротиноиды защищают хлорофилл от фотоокисления , участвуют в транспорте водорода , образующегося при фотолизе воды.

    Жирорастворимые витамины - эргостерол (провитамин Д), витамины Е , К - сосредоточены практически целиком в хлоро­пластах, где участвуют в преобразовании световой энергии в химическую. В цитозоле клеток листа в основном находятся водорастворимые витамины. Так, у шпината содержание аскор­биновой кислоты в хлоропластах в 4-5 раз меньше, чем в лис­тьях.

В хлоропластах листьев присутствует значительное количество РНК и ДНК . НК со­ставляют примерно 1 % сухой массы хлоропластов (РНК - 0.75 %, ДНК - 0,01-0,02 %). Геном хлоропластов представлен кольцевой молекулой ДНК длиной 40 мкм с моле­кулярной массой 108, кодирующей 100-150 белков средних раз­меров. Рибосомы хлоропластов составляют от 20 до 50 % общей популяции рибосом клетки. Т.о., хлоропласты имеют собственную белоксинтезирующую систему. Однако для нормального функционирования хлоропластов необходимо взаи­модеЯствие ядерного и хлоропластного геномов. Ключевой фермент фотосинтеза РДФ-карбоксилаза синтезируется под двойным контролем-ДНК ядра и хлоропласта.

Углеводы не являются конституционными веществами хлоро­пласта. Представлены фосфорными эфирами саха­ров и продуктами фотосинтеза. Поэтому содержание углеводов в хлоропластах значительно колеблется (от 5 до 50 %). В активно функционирующих хлоропластах углеводы обычно не накаплива­ются, происходит их быстрый отток. При уменьшении потреб­ности в продуктах фотосинтеза в хлоропластах образуются круп­ные крахмальные зерна. В этом случае содержание крахмала может возрасти до 50 % сухой массы и активность хлоропластов снизится.

Минеральные вещества . Сами хлоропласты составляют 25-30 % массы листа, но в них сосредоточено до 80 % Fe , 70-72 - Mg и Zn ,  50 - Cu , 60 % Ca , содержащихся в тканях листа. Это объясняется высокой и разнообразной ферментативной ак­тивностью хлоропластов (входят с состав простетических групп и кофакторов). Mg входит в состав хлорофилла. Ca стабилизирует мембранные структуры хлоро­пластов.

Возникновение и развитие хлоропластов . Хлоропласты обра­зуются в меристематических клетках из инициальных частиц или зачаточных пластид (рис.). Инициальная частица состоит из амебоидной стремы, окруженной двухмембранной оболочкой. По мере роста клетки инициалььные частицы увеличиваются в размере и приобретают форму двояковыпуклой линзы, в стреме появляются небольшие крахмальные зерна. Одновре­менно внутренняя мембрана начинает разрастаться, образуя складки (впячивания), от которых отшнуровываются пузырьки и трубочки. Такие образования называют пропластидами . Для дальнейшего их развития необходим свет. В темноте же фор­мируются этиопласты , в которых образуется мембранная ре­шетчатая структура - проламеллярное тело. На свету внутрен­ние мембраны пропластид и этиопластов образуют гранильную систему . Одновременно с этим также на свету в граны встра­иваются вновь образованные молекулы хлорофилла и других пигментов. Таким образом, структуры, которые подготавлива­ются к функционированию на свету, появляются и развиваются только при его наличии.

Наряду с хлоропластами имеется ряд других пластид, которые образуются либо непосредственно из пропластид, либо одна из другой путем взаимных превращений (рис .). К ним относятся накапливающие крахмал амилопласты (лейкопласты ) и хромо­пласты , содержащие каротиноиды. В цветках и плодах хромо­пласты возникают на ранних стадиях развития пропластид. Хро­мопласты осенней листвы представляют собой продукты деграда­ции хлоропластов , в которых в качестве структур - носителей каротнноидов выступают пластоглобулы.

Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилако­идов.

Ферменты , которые катализируют многочисленные реакции восстановительного цикла углеводов (темповой фазы фотосинте­за), а также разнообразные биосинтезы, в том числе биосинтезы белков, липидов, крахмала, присутствуют главным образом в строме , часть из них является периферическими белками ламелл.

Строение зрелых хлоропластов одинаково у всех высших рас­тений, так же как в клетках разных органов одного растения (листьях, зеленеющих корнях, коре, плодах). В зависимости от функциональной нагрузки клеток, физиологического состояния хлоропластов, их возраста различают степень их внутренней структурированности: размеры, количество гран, связь между ними. Так, в замыкающих клетках устьиц основная функция хлоропластов - фоторегуляция устьичных движений. Хлоропласты не имеют строгой гранальной структу­ры, содержат крупные крахмальные зерна, набухшие тилакоиды, липофильные глобулы. Все это свидетельствует об их низкой энергетической нагрузке (эту функцию выполняют мито­хондрии). Другая картина наблюдается при изучении хлоропластов зеленых пло­дов томата. Наличие хорошо развитой гранулярной системы сви­детельствует о высокой фукциональной нагрузке этих органелл и, вероятно, существенном вкладе фотосинтеза при формирова­нии плодов.

Возрастные изменения : Молодые характеризуются ламеллярнои структурой, в таком состоянии хлоропласты способны размножаться путем деления. В зрелых хорошо выражена система гран. В стареющих происходит разрыв тилакоидов стро­мы, связь между гранами уменьшается, в дальнейшем наблюдаются распад хлорофилла и деструкция гран. В осенней листве деградация хлоропластов приводит к образованию хромопластов .

Структура хлоропластов лабильна и ди­намична , в ней отражаются все условия жизни растения. Большое влияние оказывает режим минерального питания растений. При недостатке N хлоропласты становятся в 1.5-2 раза мельче, дефицит P и S нарушает нормальную структуру ламелл и гран, одновременная нехватка N и Ca приводит к переполнению хлоропластов крахмалом из-за нарушения нормального оттока ассимилятов. При недостатке Ca нарушается структура наружной мембраны хло­ропласта. Для поддержания структуры хлоропласта также необхо­дим свет, в темноте идет постепенное разрушение тилакоидов гран и стремы.

Хлоропласты имеют зеленый цвет за счет преобладающего в них пигмента хлорофилла. Основная их функция - фотосинтез.

Количество данных органоидов в клетке варьирует. У некоторых водорослей в клетках содержится одни большой хлоропласт, часто причудливой формы. У высших растений их множество, особенно в мезофильной ткани листьев, где количество может достигать сотни штук на клетку.

У высших растений размер органоида около 5 мкм, форма округлая слегка вытянутая в одном направлении.

Хлоропласты в клетках развиваются из пропластид или путем деления надвое ранее существующих.

В строении хлоропластов выделяют внешнюю и внутреннюю мембраны, межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.


Тилакоид представляет собой ограниченное мембраной пространство в форме приплюснутого диска. Тилакоиды в хлоропластах объединяются в стопки, которые называют гранами . Граны связаны между собой удлиненными тилакоидами - ламеллами .

Полужидкое содержимое хлоропласта называется стромой . В ней находятся его ДНК и РНК, рибосомы, обеспечивающие полуавтономность органоида (см. ).

Также в строме находятся зерна крахмала. Они образуются при избытке углеводов, образовавшихся при фотосинтетической активности. Жировые капли обычно формируются из мембран разрушающихся тилакоидов.

Функции хлоропластов

Основная функция хлоропластов - это фотосинтез - синтез глюкозы из углекислого газа и воды за счет солнечной энергии, которая улавливается хлорофиллом. В качестве побочного продукта фотосинтеза выделяется кислород. Однако процесс этот сложный и многоступенчатый, при котором синтезируются и побочные продукты, использующиеся как в самом хлоропласте, так и в остальных частях клетки.

Основным фотосинтетическим пигментом является хлорофилл. Он существует в нескольких разных формах. Кроме хлорофилла в фотосинтезе принимают участие пигменты каротиноиды.

Пигменты локализованы в мембранах тилакоидов, здесь протекают световые реакции фотосинтеза. Кроме пигментов здесь присутствуют ферменты и переносчики электронов. Хлоропласты стараются расположиться в клетке так, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету.

Хлорофилл состоит из длинного углеводного кольца и порфириновой головки. Хвост гидрофобен и погружен в липидный слой мембран тилакоидов. Головка гидрофильна и обращена к строме. Энергия света поглощается именно головкой, что приводит к возбуждению электронов.

Электрон отделяется от молекулы хлорофилла, который после этого становится электроположительным, т. е. оказывается в окисленной форме. Электрон принимается переносчиком, которые передает его на другое вещество.

Разные виды хлорофилла отличаются между собой несколько различным спектром поглощения солнечного света. Больше всего в растениях хлорофилла А.

В строме хлоропласта происходят темновые реакции фотосинтеза. Здесь находятся ферменты цикла Кальвина и другие.

История изучения фотосинтеза ведет свое начало от августа 1771 г., когда английский теолог, философ и натуралист-любитель Джозеф Пристли (1733–1804) обнаружил, что растения могут «исправлять» свойства воздуха, меняющего свой состав в результате горения или жизнедеятельности животных. Пристли показал, что в присутствии растений «испорченный» воздух снова становится пригодным для горения и поддержания жизни животных.

В ходе дальнейших исследований Ингенгауза, Сенебье, Соссюра, Буссенго и других ученых было установлено, что растения при освещении выделяют кислород и поглощают из воздуха углекислый газ. Из углекислого газа и воды растения синтезируют органические вещества. Этот процесс был назван фотосинтезом.

Роберт Майер, открывший закон сохранения энергии, в 1845 г. высказал предположение, что растения превращают энергию солнечного света в энергию химических соединений, образующихся при фотосинтезе. По его словам, «распространяющиеся в пространстве солнечные лучи «захватываются» и сохраняются для использования в дальнейшем по мере надобности». Впоследствии русским ученым К.А. Тимирязевым было убедительно доказано, что важнейшую роль в использовании растениями энергии солнечного света играют молекулы хлорофилла, присутствующие в зеленых листьях.

Образующиеся при фотосинтезе углеводы (сахара) используются как источник энергии и строительный материал для синтеза различных органических соединений у растений и животных. У высших растений процессы фотосинтеза протекают в хлоропластах – специализированных энергопреобразующих органеллах растительной клетки.

Схематическое изображение хлоропласта показано на рис. 1.

Под двойной оболочкой хлоропласта, состоящей из наружной и внутренней мембран, находятся протяженные мембранные структуры, которые образуют замкнутые пузырьки, называемые тилакоидами. Мембраны тилакоидов состоят из двух слоев молекул липидов, в которые включены макромолекулярные фотосинтетические белковые комплексы. В хлоропластах высших растений тилакоиды группируются в граны, которые представляют собой стопки сплюснутых и тесно прижатых друг к другу тилакоидов, имеющих форму дисков. Продолжением отдельных тилакоидов гран являются выступающие из них межгранные тилакоиды. Пространство между оболочкой хлоропласта и тилакоидами называется стромой. В строме содержатся хлоропластные молекулы РНК, ДНК, рибосомы, крахмальные зерна, а также многочисленные ферменты, включая те, которые обеспечивают усвоение CO2 растениями.

Публикация произведена при поддержке компании «Суши E’xpress». Компания «Суши E’xpress» предоставляет услуги доставки суши в Новосибирске . Заказав суши от компании «Суши E’xpress», Вы в быстрые сроки получите вкусное и полезное блюдо, изготовленное профессиональными поварами, с использованием самых свежих продуктов высочайшего качества. Посетив сайт компании «Суши E’xpress», Вы сможете ознакомиться с ценами и составом предлагаемых роллов, что поможет определиться с выбором блюда. Чтобы сделать заказ на доставку суши звоните по телефону 239-55-87

Световые и темновые стадии фотосинтеза

Согласно современным представлениям, фотосинтез представляет собой ряд фотофизических и биохимических процессов, в результате которых растения за счет энергии солнечного света синтезируют углеводы (сахара). Многочисленные стадии фотосинтеза принято разделять на две большие группы процессов – световую и темновую фазы.

Световыми стадиями фотосинтеза принято называть совокупность процессов, в результате которых за счет энергии света синтезируются молекулы аденозинтрифосфата (АТФ) и происходит образование восстановленного никотинамидадениндинуклеотид фосфата (НАДФ Н) – соединения, обладающего высоким восстановительным потенциалом. Молекулы АТФ выполняют роль универсального источника энергии в клетке. Энергия макроэргических (т.е. богатых энергией) фосфатных связей молекулы АТФ, как известно, используется в большинстве биохимических процессов, потребляющих энергию.

Световые процессы фотосинтеза протекают в тилакоидах, мембраны которых содержат основные компоненты фотосинтетического аппарата растений – светособирающие пигмент-белковые и электронтранспортные комплексы, а также АТФ-синтазный комплекс, который катализирует образование АТФ из аденозиндифосфата (АДФ) и неорганического фосфата (Ф i) (АДФ + Ф i → АТФ + H 2 O). Таким образом, в результате световых стадий фотосинтеза энергия света, поглощаемого растениями, запасается в форме макроэргических химических связей молекул АТФ и сильного восстановителя НАДФ Н, которые используются для синтеза углеводов в так называемых темновых стадиях фотосинтеза.

Темновыми стадиями фотосинтеза обычно называют совокупность биохимических реакций, в результате которых происходит усвоение растениями атмосферной углекислоты (CO 2) и образование углеводов. Цикл темновых биохимических превращений, приводящих к синтезу органических соединений из CO 2 и воды, по имени авторов, внесших решающий вклад в исследование этих процессов, называется циклом Кальвина–Бенсона. В отличие от электронтранспортных и АТФ-синтазного комплексов, которые находятся в тилакоидной мембране, ферменты, катализирующие «темновые» реакции фотосинтеза, растворены в строме. При разрушении оболочки хлоропласта эти ферменты вымываются из стромы, в результате чего хлоропласты теряют способность усваивать углекислый газ.

В результате превращений ряда органических соединений в цикле Кальвина–Бенсона из трех молекул CO 2 и воды в хлоропластах образуется молекула глицеральдегид-3-фосфата, имеющего химическую формулу CHO–CHOH–CH 2 O–PO 3 2- . При этом в расчете на одну молекулу CO 2 , включающуюся в глицеральдегид-3-фосфат, расходуются три молекулы АТФ и две молекулы НАДФ Н.

Для синтеза органических соединений в цикле Кальвина–Бенсона используется энергия, выделяющаяся в ходе реакции гидролиза макроэргических фосфатных связей молекул АТФ (реакция АТФ + H 2 O → АДФ + Ф i), и сильный восстановительный потенциал молекул НАДФ Н. Основная часть образовавшихся в хлоропласте молекул глицеральдегид-3-фосфата поступает в цитозоль растительной клетки, где превращается во фруктозо-6-фосфат и глюкозо-6-фосфат, которые в ходе дальнейших превращений образуют сахарофосфат – предшественник сахарозы. Из оставшихся в хлоропласте молекул глицеральдегид-3-фосфата синтезируется крахмал.

Преобразование энергии в фотосинтетических реакционных центрах

Фотосинтетические энергопреобразующие комплексы растений, водорослей и фотосинтезирующих бактерий хорошо изучены. Установлены химический состав и пространственное строение энергопреобразующих белковых комплексов, выяснена последовательность процессов трансформации энергии. Несмотря на различия в составе и молекулярном строении фотосинтетического аппарата, существуют общие закономерности процессов преобразования энергии в фотореакционных центрах всех фотосинтезирующих организмов. В фотосинтетических системах как растительного, так и бактериального происхождения единым структурно-функциональным звеном фотосинтетического аппарата является фотосистема , которая включает в себя светособирающую антенну, фотохимический реакционный центр и связанные с ним молекулы – переносчики электрона.

Рассмотрим сначала общие принципы превращения энергии солнечного света, характерные для всех фотосинтетических систем, а затем более детально остановимся на примере функционирования фотореакционных центров и цепи электронного транспорта хлоропластов у высших растений.

Светособирающая антенна (поглощение света, миграция энергии к реакционному центру)

Самым первым элементарным актом фотосинтеза является поглощение света молекулами хлорофилла или вспомогательных пигментов, входящих в состав специального пигмент-белкового комплекса, называемого светособирающей антенной. Светособирающая антенна представляет собой макромолекулярный комплекс, предназначенный для эффективного улавливания света. В хлоропластах антенный комплекс содержит большое число (до нескольких сотен) молекул хлорофилла и некоторое количество вспомогательных пигментов (каротиноидов), прочно связанных с белком.

На ярком солнечном свету отдельная молекула хлорофилла поглощает кванты света сравнительно редко, в среднем не чаще чем 10 раз в секунду. Однако поскольку на один фотореакционный центр приходится большое количество молекул хлорофилла (200–400), то даже при относительно слабой интенсивности света, падающего на лист в условиях затенения растения, происходит достаточно частое срабатывание реакционного центра. Ансамбль пигментов, поглощающих свет, по сути дела, выполняет роль антенны, которая за счет своих достаточно больших размеров эффективно улавливает солнечный свет и направляет его энергию к реакционному центру. Тенелюбивые растения имеют, как правило, больший размер светособирающей антенны по сравнению с растениями, произрастающими в условиях высокой освещенности.

У растений основными светособирающими пигментами служат молекулы хлорофилла a и хлорофилла b , поглощающие видимый свет с длиной волны λ ≤ 700–730 нм. Изолированные молекулы хлорофилла поглощают свет лишь в двух сравнительно узких полосах солнечного спектра: при длинах волн 660–680 нм (красный свет) и 430–450 нм (сине-фиолетовый свет), что, разумеется, ограничивает эффективность использования всего спектра солнечного света, падающего на зеленый лист.

Однако спектральный состав света, поглощаемого светособирающей антенной, в действительности значительно шире. Объясняется это тем, что спектр поглощения агрегированных форм хлорофилла, входящих в состав светособирающей антенны, сдвигается в сторону больших длин волн. Наряду с хлорофиллом в светособирающую антенну входят вспомогательные пигменты, которые увеличивают эффективность ее работы за счет того, что они поглощают свет в тех областях спектра, в которых сравнительно слабо поглощают свет молекулы хлорофилла – основного пигмента светособирающей антенны.

У растений вспомогательными пигментами являются каротиноиды, поглощающие свет в области длин волн λ ≈ 450–480 нм; в клетках фотосинтезирующих водорослей это красные и синие пигменты: фикоэритрины у красных водорослей (λ ≈ 495–565 нм) и фикоцианины у синезеленых водорослей (λ ≈ 550–615 нм).

Поглощение кванта света молекулой хлорофилла (Сhl) или вспомогательного пигмента приводит к ее возбуждению (электрон переходит на более высокий энергетический уровень):

Chl + hν → Chl*.

Энергия возбужденной молекулы хлорофилла Chl* передается молекулам соседних пигментов, которые, в свою очередь, могут передать ее другим молекулам светособирающей антенны:

Chl* + Chl → Chl + Chl*.

Энергия возбуждения может, таким образом, мигрировать по пигментной матрице до тех пор, пока возбуждение в конечном итоге не попадет на фотореакционный центр P (схематическое изображение этого процесса показано на рис. 2):

Chl* + P → Chl + P*.

Заметим, что продолжительность существования молекул хлорофилла и других пигментов в возбужденном состоянии очень мала, τ ≈ 10 –10 –10 –9 с. Поэтому существует определенная вероятность того, что на пути к реакционному центру P энергия таких короткоживущих возбужденных состояний пигментов может бесполезно потеряться – рассеяться в тепло или выделиться в виде кванта света (явление флуоресценции). В действительности, однако, эффективность миграции энергии к фотосинтетическому реакционному центру очень велика. В том случае когда реакционный центр находится в активном состоянии, вероятность потери энергии составляет, как правило, не более 10–15%. Такая высокая эффективность использования энергии солнечного света обусловлена тем, что светособирающая антенна представляет собой высокоупорядоченную структуру, обеспечивающую очень хорошее взаимодействие пигментов друг с другом. Благодаря этому достигается высокая скорость переноса энергии возбуждения от молекул, поглощающих свет, к фотореакционному центру. Среднее время «перескока» энергии возбуждения от одного пигмента к другому, как правило, составляет τ ≈ 10 –12 –10 –11 с. Общее время миграции возбуждения к реакционному центру обычно не превышает 10 –10 –10 –9 с.

Фотохимический реакционный центр (перенос электрона, стабилизация разделенных зарядов)

Современным представлениям о строении реакционного центра и механизмах первичных стадий фотосинтеза предшествовали работы А.А. Красновского, открывшего, что в присутствии доноров и акцепторов электрона возбужденные светом молекулы хлорофилла способны обратимо восстанавливаться (принимать электрон) и окисляться (отдавать электрон). Впоследствии Коком, Виттом и Дюйзенсом у растений, водорослей и фотосинтезирующих бактерий были обнаружены особые пигменты хлорофилловой природы, названные реакционными центрами, которые окисляются при действии света и являются, по сути дела, первичными донорами электрона при фотосинтезе.

Фотохимический реакционный центр P представляет собой особую пару (димер) молекул хлорофилла, которые выполняют роль ловушки энергии возбуждения, блуждающего по пигментной матрице светособирающей антенны (рис. 2). Подобно тому как жидкость стекает со стенок широкой воронки к ее узкому горлышку, к реакционному центру направляется энергия света, поглощаемого всеми пигментами светособирающей антенны. Возбуждение реакционного центра инициирует цепь дальнейших превращений энергии света при фотосинтезе.

Последовательность процессов, происходящих после возбуждения реакционного центра P, и диаграмма соответствующих изменений энергии фотосистемы схематически изображены на рис. 3.

Наряду с димером хлорофилла Р в фотосинтетический комплекс входят молекулы первичного и вторичного акцепторов электрона, которые мы условно обозначим символами A и B, а также первичный донор электрона – молекула D. Возбужденный реакционный центр P* обладает низким сродством к электрону и поэтому он с легкостью отдает его находящемуся рядом с ним первичному акцептору электрона A:

D(P*A)B → D(P + A –)B.

Таким образом, в результате очень быстрого (т ≈10 –12 с) переноса электрона от P* к A реализуется второй принципиально важный этап преобразования солнечной энергии при фотосинтезе – разделение зарядов в реакционном центре. При этом образуются сильный восстановитель А – (донор электрона) и сильный окислитель P + (акцептор электрона).

Молекулы P + и А – расположены в мембране асимметрично: в хлоропластах реакционный центр P + находится ближе к поверхности мембраны, обращенной внутрь тилакоида, а акцептор А – расположен ближе к внешней стороне. Поэтому в результате фотоиндуцированного разделения зарядов на мембране возникает разность электрических потенциалов . Индуцированное светом разделение зарядов в реакционном центре подобно генерации разности электрических потенциалов в обычном фотоэлементе. Следует, однако, подчеркнуть, что, в отличие от всех известных и широко используемых в технике фотопреобразователей энергии, эффективность работы фотосинтетических реакционных центров очень высока. КПД разделения зарядов в активных фотосинтетических реакционных центрах, как правило, превышает 90–95% (у лучших образцов фотоэлементов КПД не более 30%).

За счет каких механизмов обеспечивается столь высокая эффективность преобразования энергии в реакционных центрах? Почему электрон, перенесенный на акцептор A, не возвращается обратно к положительно заряженному окисленному центру P + ? Стабилизация разделенных зарядов обеспечивается главным образом за счет вторичных процессов электронного транспорта, следующих за переносом электрона от P* к A. От восстановленного первичного акцептора А – электрон очень быстро (за 10 –10 –10 –9 с) уходит на вторичный акцептор электрона B:

D(P + A –)B → D(P + A)B – .

При этом происходит не только удаление электрона от положительно заряженного реакционного центра P + , но и заметно снижается энергия всей системы (рис. 3). Это означает, что для переноса электрона в обратном направлении (переход B – → A) ему потребуется преодолеть достаточно высокий энергетический барьер ΔE ≈ 0,3–0,4 эВ, где ΔE – разность энергетических уровней для двух состояний системы, при которых электрон находится соответственно на переносчике A или B. По этой причине для возвращения электрона назад, от восстановленной молекулы В – к окисленной молекуле A, ему потребовалось бы гораздо больше времени, чем для прямого перехода A – → B. Иными словами, в прямом направлении электрон переносится гораздо быстрее, чем в обратном. Поэтому после переноса электрона на вторичный акцептор B существенно уменьшается вероятность его возвращения назад и рекомбинации с положительно заряженной «дыркой» P + .

Вторым фактором, способствующим стабилизации разделенных зарядов, служит быстрая нейтрализация окисленного фотореакционного центра P + за счет электрона, поступающего к P + от донора электрона D:

D(P + A)B – → D + (PA)B – .

Получив электрон от молекулы донора D и вернувшись в свое исходное восстановленное состояние P, реакционный центр уже не сможет принять электрон от восстановленных акцепторов, однако теперь он готов к повторному срабатыванию – отдать электрон находящемуся рядом с ним окисленному первичному акцептору A. Такова последовательность событий, происходящих в фотореакционных центрах всех фотосинтезирующих систем.

Цепь электронного транспорта хлоропластов

В хлоропластах высших растений имеются две фотосистемы: фотосистема 1 (ФС1) и фотосистема 2 (ФС2), различающиеся по составу белков, пигментов и оптическим свойствам. Светособирающая антенна ФС1 поглощает свет с длиной волны λ ≤ 700–730 нм, а ФС2 – свет с λ ≤ 680–700 нм. Индуцированное светом окисление реакционных центров ФС1 и ФС2 сопровождается их обесцвечиванием, которое характеризуется изменениями их спектров поглощения при λ ≈ 700 и 680 нм. В соответствии с их оптическими характеристиками реакционные центры ФС1 и ФС2 получили название P 700 и P 680 .

Две фотосистемы связаны между собой посредством цепи электронных переносчиков (рис. 4). ФС2 является источником электронов для ФС1. Инициируемое светом разделение зарядов в фотореакционных центрах P 700 и P 680 обеспечивает перенос электрона от воды, разлагаемой в ФС2, к конечному акцептору электрона – молекуле НАДФ + . Цепь электронного транспорта (ЦЭТ), соединяющая две фотосистемы, в качестве переносчиков электрона включает в себя молекулы пластохинона, отдельный электронтранспортный белковый комплекс (так называемый b/f-комплекс) и водорастворимый белок пластоцианин (P c). Схема, иллюстрирующая взаимное расположение электронтранспортных комплексов в тилакоидной мембране и путь переноса электрона от воды к НАДФ + , показана на рис. 4.

В ФС2 от возбужденного центра Р* 680 электрон переносится сначала на первичный акцептор феофетин (Phe), а затем на молекулу пластохинона Q A , прочно связанную с одним из белков ФС2,

Y(P* 680 Phe)Q A Q B → Y(P + 680 Phe –)Q A Q B →Y(P + 680 Phe)Q A – Q B .

Затем электрон переносится на вторую молекулу пластохинона Q B , а Р 680 получает электрон от первичного донора электрона Y:

Y(P + 680 Phe)Q A – Q B → Y + (P 680 Phe)Q A Q B – .

Молекула пластохинона, химическая формула которой и ее расположение в бислойной липидной мембране показаны на рис. 5, способна принять два электрона. После двукратного срабатывания реакционного центра ФС2 молекула пластохинона Q B получит два электрона:

Q B + 2е – → Q B 2– .

Отрицательно заряженная молекула Q B 2– обладает высоким сродством к ионам водорода, которые она захватывает из стромального пространства. После протонирования восстановленного пластохинона Q B 2– (Q B 2– + 2H + → QH 2) образуется электрически нейтральная форма этой молекулы QH 2 , которая называется пластохинолом (рис. 5). Пластохинол выполняет роль подвижного переносчика двух электронов и двух протонов: покинув ФС2, молекула QH 2 может легко перемещаться внутри тилакоидной мембраны, обеспечивая связь ФС2 с другими электронтранспортными комплексами.

Окисленный реакционный центр ФС2 Р 680 обладает исключительно высоким сродством к электрону, т.е. является очень сильным окислителем. Благодаря этому в ФС2 происходит разложение воды – химически устойчивого соединения. Входящий в состав ФС2 водорасщепляющий комплекс (ВРК) содержит в своем активном центре группу ионов марганца (Mn 2+), которые служат донорами электрона для P 680 . Отдавая электроны окисленному реакционному центру, ионы марганца становятся «накопителями» положительных зарядов, которые непосредственно участвуют в реакции окисления воды. В результате последовательного четырехкратного срабатывания реакционного центра P 680 в Mn-содержащем активном центре ВРК накапливаются четыре сильных окислительных эквивалента (или четыре «дырки») в форме окисленных ионов марганца (Mn 4+), которые, взаимодействуя с двумя молекулами воды, катализируют реакцию разложения воды:

2Mn 4+ + 2H 2 O → 2Mn 2+ + 4H + + O 2 .

Таким образом, после последовательной передачи четырех электронов от ВРК к Р 680 происходит синхронное разложение сразу двух молекул воды, сопровождающееся выделением одной молекулы кислорода и четырех ионов водорода, которые попадают во внутритилакоидное пространство хлоропласта.

Образовавшаяся при функционировании ФС2 молекула пластохинола QH 2 диффундирует внутрь липидного бислоя тилакоидной мембраны к b/f-комплексу (рис. 4 и 5). При столкновении с b/f-комплексом молекула QH 2 связывается с ним, а затем передает ему два электрона. При этом на каждую молекулу пластохинола, окисляемую b/f-комплексом, внутрь тилакоида выделяются два иона водорода. В свою очередь, b/f-комплекс служит донором электрона для пластоцианина (P c) – сравнительно небольшого водорастворимого белка, у которого в состав активного центра входит ион меди (реакции восстановления и окисления пластоцианина сопровождаются изменениями валентности иона меди Cu 2+ + e – ↔ Cu +). Пластоцианин выполняет роль связующего звена между b/f-комплексом и ФС1. Молекула пластоцианина быстро перемещается внутри тилакоида, обеспечивая перенос электрона от b/f-комплекса к ФС1. От восстановленного пластоцианина электрон поступает непосредственно к окисленным реакционным центрам ФС1 – Р 700 + (см. рис. 4). Таким образом, в результате совместного действия ФС1 и ФС2 два электрона от молекулы воды, разлагаемой в ФС2, через цепь электронного транспорта переносятся в конечном итоге на молекулу НАДФ + , обеспечивая образование сильного восстановителя НАДФ Н.

Зачем хлоропластам нужны две фотосистемы? Известно, что фотосинтезирующие бактерии, которые используют в качестве донора электрона для восстановления окисленных реакционных центров различные органические и неорганические соединения (например, Н 2 S), успешно функционируют с одной фотосистемой. Появление двух фотосистем, вероятнее всего, связано с тем, что энергии одного кванта видимого света недостаточно для того, чтобы обеспечить разложение воды и эффективное прохождение электроном всего пути по цепи молекул-переносчиков от воды к НАДФ + . Приблизительно 3 млрд лет назад на Земле появились синезеленые водоросли или цианобактерии, которые приобрели способность использовать воду в качестве источника электронов для восстановления углекислоты. В настоящее время считается, что ФС1 ведет свое происхождение от зеленых бактерий, а ФС2 – от пурпурных бактерий. После того как в ходе эволюционного процесса ФС2 «включилась» в единую цепь переноса электрона вместе с ФС1, стало возможным решить энергетическую проблему – преодолеть довольно большую разницу в окислительно-восстановительных потенциалах пар кислород/вода и НАДФ + /НАДФ Н. Возникновение фотосинтезирующих организмов, способных окислять воду, стало одним из важнейших этапов развития живой природы на Земле. Во-первых, водоросли и зеленые растения, «научившись» окислять воду, овладели неисчерпаемым источником электронов для восстановления НАДФ + . Во-вторых, разлагая воду, они наполнили атмосферу Земли молекулярным кислородом, создав, таким образом, условия для бурного эволюционного развития организмов, энергетика которых связана с аэробным дыханием.

Сопряжение процессов электронного транспорта с переносом протонов и синтезом АТФ в хлоропластах

Перенос электрона по ЦЭТ, как правило, сопровождается понижением энергии. Этот процесс можно уподобить самопроизвольному движению тела по наклонной плоскости. Понижение уровня энергии электрона в ходе его движения вдоль ЦЭТ вовсе не означает, что перенос электрона всегда является энергетически бесполезным процессом. В нормальных условиях функционирования хлоропластов большая часть энергии, выделяющейся в ходе электронного транспорта, не пропадает бесполезно, а используется для работы специального энергопреобразующего комплекса, называемого АТФ-синтазой. Этот комплекс катализирует энергетически невыгодный процесс образования АТФ из АДФ и неорганического фосфата Ф i (реакция АДФ + Ф i → АТФ + H 2 O). В этой связи принято говорить, что энергодонорные процессы электронного транспорта сопряжены с энергоакцепторными процессами синтеза АТФ.

Важнейшую роль в обеспечении энергетического сопряжения в мембранах тилакоидов, как и во всех остальных энергопреобразующих органеллах (митохондрии, хроматофоры фотосинтезирующих бактерий), играют процессы протонного транспорта. Синтез АТФ тесно связан с переносом через АТФ-синтазу трех протонов из тилакоидов (3H in +) в строму(3Н out +):

АДФ + Ф i + 3H in + → АТФ + Н 2 О + 3Н out + .

Этот процесс становится возможным потому, что вследствие асимметричного расположения переносчиков в мембране функционирование ЦЭТ хлоропластов приводит к накоплению избыточного количества протонов внутри тилакоида: ионы водорода поглощаются снаружи на стадиях восстановления НАДФ + и образования пластохинола и выделяются внутри тилакоидов на стадиях разложения воды и окисления пластохинола (рис. 4). Освещение хлоропластов приводит к существенному (в 100–1000 раз) увеличению концентрации ионов водорода внутри тилакоидов.

Итак, мы рассмотрели цепь событий, в ходе которых энергия солнечного света запасается в форме энергии высокоэнергетичных химических соединений – АТФ и НАДФ Н. Эти продукты световой стадии фотосинтеза используются в темновых стадиях для образования органических соединений (углеводов) из углекислого газа и воды. Основные этапы преобразования энергии, приводящие к образованию АТФ и НАДФ Н, включают в себя следующие процессы: 1) поглощение энергии света пигментами светособирающей антенны; 2) перенос энергии возбуждения к фотореакционному центру; 3) окисление фотореакционного центра и стабилизация разделенных зарядов; 4) перенос электрона по цепи электронного транспорта, образование НАДФ Н; 5) трансмембранный перенос ионов водорода; 6) синтез АТФ.

1. Албертс Б., Брей Д., Льюис Дж., Робертс К., Уотсон Дж. Молекулярная биология клетки. Т. 1. – М.: Мир, 1994. 2-е изд.
2. Кукушкин А.К., Тихонов А.Н. Лекции по биофизике фотосинтеза растений. – М.: Изд-во МГУ, 1988.
3. Николс Д.Д. Биоэнергетика. Введение в хемиосмотическую теорию. – М.: Мир, 1985.
4. Скулачев В.П. Энергетика биологических мембран. – М.: Наука, 1989.


Весь процесс фотосинтеза протекает в зеленых пластидах - хлоропластах. Различают три вида пластид: лейкопласты - бесцветные, хромопласты - оранжевые, хлоропласты - зеленые. Именно в хлоропластах сосредоточен зеленый пигмент хлорофилл. Незеленые растения, например грибы, лишены пластид. Эти растения не обладают способностью к фотосинтезу. В процессе эволюции дифференциация пластид произошла очень рано. Правда, у фотосинтезирующих бактерий и сине-зеленых водорослей пластид еще нет, их роль выполняет окрашенная часть протоплазмы, прилегающая к оболочке. Это наиболее примитивная организация фотосинтетического аппарата. Однако уже у водорослей имеются специальные образования (хроматофоры), в которых сосредоточены пигменты, они разнообразны по форме (спиральные, ленточные, в виде пластинок или звезд). Высшие растения характеризуются вполне сформировавшимся типом пластид в форме диска или двояковыпуклой линзы. Приняв форму диска, хлоропласты становятся универсальным аппаратом фотосинтеза.

Химический состав хлоропластов достаточно сложен и характеризуется высоким (75 %) содержанием воды. Около 75-80 % общего количества сухих веществ приходится на долю различных органических соединений, 20-25 % - на долю минеральных веществ. Структурной основой хлоропластов являются белки, содержание которых достигает 50-55 % сухой массы, примерно половина из них водорастворимые. Такое высокое содержание белков объясняется их многообразными функциями в составе хлоропластов. Это структурные белки, являющиеся основой мембран, белки-ферменты, транспортные белки, поддерживающие определенный ионный состав, отличающийся от цитозоля, сократительные белки, подобные актомиозину мышц, которые обеспечивают двигательную активность хлоропластов. Белки выполняют также рецепторную функцию, принимая участие в регуляции интенсивности фотосинтеза в меняющихся условиях внутренней и внешней среды.

Важнейшей составной частью хлоропластов являются липиды, содержание которых колеблется от 30 до 40 % сухой массы. Липиды хлоропластов представлены тремя группами соединений.

Углеводы не являются конституционными веществами хлоропласта. В очень небольших количествах фосфорные эфиры сахаров участвуют в восстановительном цикле углерода, в основном же это продукты фотосинтеза. Поэтому содержание углеводов в хлоропластах колеблется значительно (от 5 до 50 %). В активно функционирующих хлоропластах углеводы обычно не накапливаются, происходит их быстрый отток. При уменьшении потребности в продуктах фотосинтеза в хлоропластах образуются крупные крахмальные зерна. В этом случае содержание крахмала может возрасти до 50 % сухой массы и активность хлоропластов снизится.

В хлоропластах высокое содержание минеральных веществ. Сами хлоропласты составляют 25-30 % массы листа, но в них сосредоточено до 80 % железа, 70-72 % - магния и цинка, около 50 % - меди, 60 % кальция, содержащихся в тканях листа. Эти данные хорошо согласуются с высокой и разнообразной ферментативной активностью хлоропластов. Минеральные элементы выступают в роли простетических групп и кофакторов деятельности ферментов. Магний входит в состав хлорофилла. Важная роль кальция заключается в стабилизации мембранных структур хлоропластов.

Строение хлоропласта, наблюдаемое с помощью электронного микроскопа, весьма сложное. Подобно ядру и митохондриям хлоропласт окружен оболочкой, состоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция - матрикс, или строма, которую пронизывают мембраны - ламеллы . Ламеллы, соединенные друг с другом, образуют пузырьки - тилакоиды. Плотно прилегая друг к другу, тилакоиды образуют граны, которые различают даже под световым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью межгранных тяжей - тилакоидов стромы. Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилакоидов.

Рис.1. Строение хлоропласта

1 - внешняя мембрана; 2 - внутренняя мембрана; 3 - крахмальное зерно; 4 - ДНК; 5 - тилакоиды стромы (фреты); 6 - тилакоид граны; 7 - матрикс (строма)

Строение зрелых хлоропластов одинаково у всех высших растений, как и в клетках разных органов одного растения (листьях, зеленеющих корнях, коре, плодах). В зависимости от функциональной нагрузки клеток, физиологического состояния хлоропластов, их возраста различают степень их внутренней структурированности: размеры, количество гран, связь между ними. Так, в замыкающих клетках устьиц основная функция хлоропластов - фоторегуляция устьичных движений. Этот процесс обеспечивается энергией высокоструктурированными митохондриями. Хлоропласты содержат крупные крахмальные зерна, набухшие тилакоиды, липофильные глобулы, что свидетельствует об их низкой энергетической нагрузке.

С возрастом строение хлоропластов существенно меняется. Молодые хлоропласты характеризуются ламеллярной структурой, в таком состоянии хлоропласты способны размножаться делением. В зрелых хлоропластах хорошо выражена система гран. В стареющих хлоропластах происходит разрыв тилакоидов стромы, связь между гранами уменьшается, в дальнейшем наблюдаются распад хлорофилла и деструкция гран. В осенней листве деградация хлоропластов приводит к образованию хромопластов, в которых каротиноиды сосредоточены в пластоглобулах.

Физиологические особенности хлоропластов

Важным свойством хлоропластов является их способность к движению. Хлоропласты передвигаются не только вместе с цитоплазмой, но способны и самопроизвольно изменять свое положение в клетке. Скорость движения хлоролластов составляет около 0,12 мкм/с. Хлоропласты могут быть распределены в клетке равномерно, однако чаще они скапливаются около ядра и вблизи клеточных стенок. Большое значение для расположения хлоропластов в клетке имеют направление и интенсивность освещения. При малой интенсивности освещения Хлоропласты становятся перпендикулярно к падающим лучам, что является приспособлением к лучшему их улавливанию. При высокой освещенности хлоропласты передвигаются к боковым стенкам и поворачиваются ребром к падающим лучам. В зависимости от освещения может также меняться и форма хлоропластов. При более высокой интенсивности света их форма становится ближе к сферической.

Основная функция хлоропластов - это процесс фотосинтеза. В 1955 г. Д. Арнон показал, что в изолированных хлоронпластах может быть осуществлен весь процесс фотосинтеза. Важно отметить, что хлоропласты имеются не только в клетках листа. Они встречаются в клетках не специализирующихся на фотосинтезе органов: в стеблях, колосковых чешуйках и остях колосьев, корнеплодах, клубнях картофеля и т. д. В ряде случаев зеленые пластиды обнаруживаются в тканях, расположенных не в наружных, освещенных частях растений, а в слоях, удаленных от света, в тканях центрального цилиндра стебля, в средней части луковицы лилейных, а также в клетках зародыша семени многих покрытосеменных растений. Последнее явление (хлорофиллоносность зародыша) привлекает внимание систематиков растений. Имеются предложения разделить все покрытосеменные растения на две большие группы: хлороомбриофиты и лейкоэмбриофиты, т. е. содержащие и не содержащие хлоропласты в зародыше (Яковлев). Исследования показали, что структура хлоропластов, расположенных в других органах растения, так же как и состав пигментов, сходны с хлоропластами листа. Это дает основания считать, что они способны к фотосинтезу.

В том случае, если они подвергаются освещению, по-видимому, в них действительно происходит фотосинтез. Так, фотосинтез хлоропластов, расположенных в остях колоса, может составлять около 30% от общего фотосинтеза растения. Позеленевшие на свету корни способны к фотосинтезу. В хлоропластах, находящихся, в кожуре плода до определенного этапа его развития, также может идти фотосинтез. Согласно предположению А. Л. Курсанова, хлоропласты, расположенные вблизи проводящих путей, выделяя кислород, способствуют повышению интенсивности обмена веществ ситовидных трубок. Вместе с тем роль хлоропластов не ограничивается их способностью к фотосинтезу. В определенных случаях они могут служить источником питательных веществ (Е. Р. Гюббенет). Хлоропласты содержат большее количество витаминов, ферментов и даже фитогормонов (в частности, гиббереллина). В условиях, при которых ассимиляция исключена, зеленые пластиды могут играть активную роль в процессах обмена веществ.