Форма молекулы днк бактерий. Организация генетического материала бактериальной клетки. Мазок на степень чистоты

ДНК-содержащие вирусы имеют либо собственные ферменты репликации (в капсиде), либо в их геноме закодирована информация о синтезе вирусных ферментов, обеспечивающих репликацию вирусной нуклеиновой кислоты. Количество этих ферментов различно в применении к разным вирусам. Например, в геноме бактериального вируса Т4 закодирована информация о синтезе около 30 вирусных ферментов. Далее геном крупных вирусов кодирует нуклеазы, разрушающие ДНК клетки-хозяина,а также белки, воздействие которых на клеточную РНК-полимеразу сопровождается тем, что «обработанная таким образом РНК-полимераза транскрибирует на разных стадиях вирусной инфекции разные вирусные гены. Напротив, малые по размерам ДНК-содержащие вирусы в большей мере зависят от ферментов клеток-хозяев. Например, синтез ДНК аденовирусов обеспечивается клеточными ферментами.[ ...]

Бактериальные ДНК - это высокополимерные соединения, состоящие из большого числа нуклеотидов - полинуклеотиды с молекулярным весом около 4 млн. Молекула ДНК представляет собой цепь нуклеотидов, где расположение их имеет определенную последовательность. В последовательности расположения азотистых оснований закодирована генетическая информация каждого вида. Нарушение этой последовательности возможно при естественных мутациях или же под влиянием мутагенных факторов. При этом микроорганизм приобретает или утрачивает какое-либо свойство. У него наследственно изменяются признаки, т. е. появляется новая форма микроорганизма. У всех микроорганизмов - прокариотов и эукариотов - носителями генетической информации являются нуклеиновые кислоты - ДНК и РНК. Лишь некоторые вирусы представляют собой исключение: у них ДНК отсутствует, а наследственная информация записана или отражена только в РНК.[ ...]

В бактериальных клетках в общем количестве оснований ДНК 32-65 мол.% гуанина и цитозина.[ ...]

Ядро бактериальной клетки. Примерно 1-2% веса сухой массы микроорганизмов приходится на ДНК, в которой заложена генетическая информация организма. У большинства микроорганизмов имеются области (или несколько областей), в которой сконцентрировано основное количество ДНК, имеющие определенную структуру (или органеллу) и называющиеся ядром. Ядро (или ядерное вещество) связано с цитоплазматической мембраной, независимо от того, окружено оно элементарными мембранами (как у амебы) или не имеет их (как у бактерий и сине-зеленых водорослей). Ядерное вещество активизируется в период размножения и при наступлении возрастных изменений, связанных со старением клетки.[ ...]

Сегмент ДНК (ген), который предназначен для молекулярного клонирования, должен обладать способностью к репликации при переносе его в бактериальную клетку, т. е. быть репликоном. Однако он такой способностью не обладает. Поэтому, чтобы обеспечить перенос и обнаружение клонируемых генов в клетках, их объединяют с так называемыми генетическими векторами. Последние должны обладать, как минимум, двумя свойствами. Во-первых, векторы должны быть способны к репликации в клетках, причем в нескольких копиях. Во-вторых, они должны обеспечивать возможность селекции клеток, содержащих вектор, т. е. обладать маркером, на который можно вести контрселекцию клеток, содержащих вектор вместе с клонируемым геном (рекомбинантные молекулы ДНК). Таким требованиям отвечают плазмиды и фаги. Плазмиды являются хорошими векторами по той причине, что они являются репликонами и могут содержать гены резистентности к,какому-либо антибиотику, что позволяет вести селекцию бактерий на устойчивость к этому антибиотику и, следовательно, легкое обнаружение рекомбинантных молекул ДНК.[ ...]

У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками - гистонами - ив нуклео-иде расположена в виде пучка фибрилл.[ ...]

Применение методов рекомбинантной ДНК для получения биологических агентов для борьбы с загрязнениями находится на ранней стадии, но есть метод, который может оказаться полезным в обозримом будущем - это генетическое зондирование. Отбор организмов, способных трансформировать новое соединение, часто основан на способности использовать вещество как субстрат роста. Если рост слабый или субстрат только комета-болизируется, то методы селекции окажутся непригодными для идентификации деградативной способности. Следовательно, было бы полезно развивать генетическое зондирование для определения специфических последовательностей в плазмидах и хромосомах, это необходимо для определения катаболического потенциала, даже если этот потенциал не экспрессируется. Такие зонды разработаны для TOL-плазмид. Метод может определить одну бактериальную колонию, содержащую TOL-плазмиду, среди 106 колоний Escherichia coli. Такой мощный инструмент будет иметь огромное значение для выделения скрытых катаболических функций .[ ...]

Разработка изящной методики «клонирования» ДНК для получения большого количества точных копий специфических фрагментов ДНК (рис. 13.4) открыла в последнее время новые горизонты в изучении структуры, организации и функции генома. Если расщепить двухцепочечную ДИК одним из ферментов «рестрикции» (одной из нуклеаз), специфично узнающих и расщепляющих короткие последовательности нуклеотидов (4- 6 пар), то возникают в высшей степени воспроизводимые фрагменты ДНК. Концы двух цепей ДНК обычно бывают смещены относительно друг друга вследствие специфичности мест разрезания двухцепочечной молекулы, цепи которой комплементарны по составу оснований. ДНК обычно встраивают в плазмидный ген, важный для селекции, такой, как ген устойчивости к антибиотикам, что позволяет содержащим такую плазмиду бактериям расти в присутствии антибиотика.[ ...]

В бактериях при репликации образуется много копий плазмид, и таким образом можно «вырастить» большие количества встроенных фрагментов ДНК, а затем снова просто выделить их путем расщепления тем же самым ферментом рестрикции с разделением полученных продуктов гель-электрофорезом. Использование этого метода рекомбинации ДНК произвело революцию в изучении генов.[ ...]

Недавно было обнаружено, что мутагенное действие на бактериальные-ДНК-вирусы оказывают лучи с длиной волны 320-400 нм (область, близкая к зоне видимого света), обладающие низкой интенсивностью . Возможное влияние радиации в этом диапазоне длин волн на вирусы растений пока не обнаружено.[ ...]

Кривые зависимости реассоциацни от СОТ, полученные для бактериальной ДНК, лишены перегибов, а ДИК эукариот реас-социирует по другому типу (рис. 13.2). При низких концентрациях ДНК и коротком времени инкубации реиатурирует заметная доля одноцепочечной ДНК, а при увеличении СОТ образуется дополнительное количество двухцепочечных молекул, так что получается двухфазная кривая. Быстрая реиатурация при низких значениях СОТ показывает, что какие-то последовательности у эукариот повторяются много раз, т. е. до 10 000 раз и более.[ ...]

Отсутствие СХС может иммитироваться и в тех случаях, когда ДНК тестерных фагов не содержат сайтов, узнаваемых существующей в исследуемом штамме рестриктазой. Это явление представляет собой один из вариантов эволюционных адаптивных изменений бактериальных вирусов, призванных способствовать преодолению ими барьера СХС. Действие давления отбора в данном конкретном случае выражается в статистическом достоверном уменьшении числа или даже полной элиминации в фаговой ДНК последовательностей нуклеотидов, являющихся субстратом рестриктаз, характерных для клеток-хозяев бактериального вируса .[ ...]

Линдегрен описал возможные стадии образования бактериофага из ДНК профага, предположив, что профаг возникает как фрагмент чужеродной бактериальной ДНК, случайно проникший в клетку, который на ранних стадиях делится синхронно с бактериальной ДНК. Следующим важным этапом в развитии вируса явилось бы такое изменение профага, в результате которого стало возможным его независимое от ДНК клетки-хозяина размножение; в результате профаг использовал бы. все доступные нуклеотиды, нарушив тем-самым рост клетки-хозяина. Наконец, на какой-то более поздней стадии могла бы образоваться защитная белковая оболочка и возникли другие белки, что должно было обеспечить выживание ДНК вне организма хозяина и эффективное заражение новых клеток. Отделившийся фрагмент бактериальной ДНК вначале, очевидно, кодировал белки, приспособленные к бактериальным функциям. Необходимы очень существенные изменения в ДНК, чтобы могли возникнуть объекты настолько сложные и специализированные, как, скажем, фаг Т2 Е. coli, содержащие к тому же основания, которые в бактериальной ДИК отсутствуют.[ ...]

Генетическая информация бактерий не ограничивается ДНК, расположенной в нуклеоиде бактериальной клетки. Как уже отмечалось в предыдущих разделах книги, носителями наследственных свойств служат также внехромосомные элементы, получившие общее название плазмид. В отличие от ДНК ядерных эквивалентов-нуклеоидов, являющихся органоидами бактериальной клетки, плазмиды представляют собой независимые генетические элементы. Потеря плазмид или их приобретение не отражается на биологии клетки (приобретение плазмид оказывает положительное влияние лишь на популяцию в целом, повышая жизнеспособность вида). К трансмиссивным относят плазмиды, инициирующие свойства доноров у клеток-хозяев. При этом последние получают новое качество - возможность конъюгировать с клетками-реципиентами и отдавать им свои плазмиды. Клетки-реципиенты, приобретая во время конъюгации плазмиды, сами превращаются в доноров.[ ...]

Отсутствие адсорбции не исчерпывает разнообразия вариантов взаимодействия бактериальных вирусов и микробных клеток. Они иллюстрируют лишь одну сторону этого явления, а именно проявление клеточных защитных механизмов, фенотипически (по критерию отсутствия роста) иммитирующих рестрикцию. Однако, существует и другой вариант взаимодействия клетка-бактериофаг, который может иммитировать отсутствие СХС. Примерами таких механизмов является синтез ингибиторов и метилаз кодируемых фаговыми генами, защищающих вирусную ДНК от действия рестриктаз II типа.[ ...]

Механизм обеззараживающего действия хлора связан с нарушением обмена веществ бактериальной клетки в процессе дезинфекции воды. При этом выявлено влияние на ферментную активность бактерий, в частности, на дегидрогеназы, катализирующие окислительно-восстановительные реакции в бактериальной клетке. А. М. Ски-дальской (1969) было изучено влияние хлора на процесс декарбоксилирования аминокислот бактерий, протекающий в присутствии строго специфичных ферментов-декарбоксилаз, а также был определен нуклеотидный состав ДНК кишечной палочки после окончания процесса обеззараживания при различных уровнях бактерицидного эффекта.[ ...]

Бактериофаги Т-группы имеют форму барабанных палочек размером 100 х 25 нм. Их геном представлен ДНК. Они являются вирулентными фагами, т. к. после инфицирования ими бактериальных клеток последние лизируются с освобождением большого количества вновь синтезированных фаговых частиц.[ ...]

Плазмиды бактерий - это генетические структуры, находящиеся в цитоплазме и представляющие собой молекулы ДНК размером от 2250 до 400 ООО пар азотистых оснований. Они существуют обособленно от хромосом в количестве от одной до нескольких десятков копий на одну бактериальную клетку.[ ...]

Штамм Pseu.dom.onas вуг1 ае ри. рка8еоИсо1а обладает плазмидой длиной 150 тыс. п. н., которая может реплицироваться автономно, а может интегрироваться в бактериальную хромосому. Последующее неточное вырезание позволило получить семейство плазмид длиной от 35 до 270 тыс. п. н., некоторые из них содержали большие сегменты хромосомной ДНК .[ ...]

В ходе эволюции бактерии развили способность синтезировать так называемые рестрицирующие ферменты (эндонуклеазы), которые стали частью клеточной (бактериальной) системы рестрикции-модификации. У бактерий системы рестрикции-модификации являются внутриклеточной иммунной системой защиты от чужеродной ДНК. В отличие от высших организмов, у которых распознание и разрушение вирусов, бактерий и других патогенов происходит внеклеточно, у бактерий защита от чужеродной ДНК (ДНК растений и животных, в организме которых они обитают) происходит внухриклеточно, т. е. тогда, когда чужеродная ДНК проникает в цитоплазму бактерий. С целью защиты бактерии в ходе эволюции развили также способность «метить» собственную ДНК метилирующими основаниями на определенных последовательностях. По этой причине чужеродная ДНК из-за отсутствия в ней метальных групп на тех же последовательностях плавится (разрезается) на фрагменты разными бактериальными рестриктазами, а затем деградируется бактериальными экзонуклеазами до нуклеотидов. Можно сказать, что таким образом бактерии защищают себя от ДНК растений и животных, в организме которых они обитают временно (как патогены) или постоянно (как сапрофиты).[ ...]

Наследственные свойства бактерий или отдельные признаки закодированы в единицах наследственности - генах, линейно расположенных в хромосоме вдоль нити ДНК. Следовательно, ген является фрагментом нити ДНК- Каждому признаку соответствует определенный ген, а часто еще меньший отрезок ДНК - кодон. Иначе говоря, в нити ДНК в линейном порядке расположена информация обо всех свойствах бактерий. При этом у бактерий есть еще одна особенность. В ядрах эукариотов содержится обычно несколько хромосом, число их в ядре постоянно у каждого вида. Нуклеоид бактерий содержит лишь одно кольцо из нити ДНК, т. е. одну хромосому. Однако запасом информации, заключенным в одной хромосоме или в кольцеобразно сомкнувшейся двунитчатой спирали ДНК, сумма наследственных признаков бактериальной клетки не исчерпывается. Плазмиды содержат ДНК, также несущую генетическую информацию, передаваемую от материнской клетки к дочерней.[ ...]

Мутации - это изменения в генном аппарате клетки, которые сопровождаются изменениями контролируемых этими генами признаков. Различают макро- и микроповреждения ДНК, ведущие к изменению свойств клетки. Макроизменения, а именно: выпадение участка ДНК (деления), перемещение отдельного участка (транслокация) или поворот определенного участка молекулы на 180° (инверсия) -у бактерий наблюдаются сравнительно редко Гораздо более характерны для них микроповреждения, или точечные мутации, т. е. качественные изменения в отдельных генах, например замена пары азотистых оснований. Мутации бывают прямые и обратные, или реверсивные. Прямые - это мутации организмов дикого типа, например утрата способности самостоятельно синтезировать факторы роста, т. е. переход от прото- к ауксотрофности. Обратные мутации представляют собой возвращение, или реверсию, к дикому типу. Способность к реверсии характерна для точечных мутаций. В результате мутаций изменяются такие важнейшие признаки, как способность самостоятельно синтезировать аминокислоты и витамины (ауксотрофные мутанты), способность к образованию ферментов. Эти мутации называют биохимическими. Хорошо известны также мутации, ведущие к изменению чувствительности к антибиотикам и другим антимикробным веществам. По происхождению мутации разделяют на спонтанные и индуцированные. Спонтанные возникают самопроизвольно без вмешательства человека и носят случайный характер. Частота таких мутаций очень низка и составляет от 1 X Ю“4 ло 1 X 10-10. Индуцированные возникают при воздействии на микроорганизмы физических или химических мутагенных факторов. К физическим факторам, обладающим мутагенным действием, относятся ультрафиолетовое и ионизирующие излучения, а также температура. Химическими мутагенами являются ряд соединений и среди них наиболее активны так называемые супермутагены. В природных условиях и эксперименте изменения в составе бактериальных популяций могут возникать в результате действия двух факторов - мутаций и автоселекции, происходящей в результате адаптации некоторых мутантов к условиям среды обитания. Такой процесс, очевидно, наблюдается в среде, где преобладающим источником питания является синтетическое вещество, например, ПАВ или капролактам.[ ...]

Одиночная клетка E. coli окружена трехслойной клеточной оболочкой толщиной порядка 40 нм, представляющей собой «мешок» или «конверт», в котором заключено клеточное содержимое в виде, примерно, 2 х Ю 1Я г белка, 6 х 10 16 г ДНК и 2 х 10 14 г РНК (в основном ри-босомной РНК). В бактериальной клетке синтезируется около 2000 разных белков, большинство которых содержится в цитоплазме. Концентрация одних белков составляет 10“® М, тогда как других - порядка 2 х 10"4 М (от 10 до 200 000 молекул на клетку).[ ...]

У одноклеточных организмов половое размножение существует в нескольких формах. Конъюгация встречается также у инфузорий, у которых во время этого процесса происходит переход ядер от одних особей к другим, после чего следует деление последних.[ ...]

Бактерии: прокариоты («доядерные») одноклеточные организмы. Их клетки не имеют отделенного от цитоплазмы ядра. Однако генетическая программа, как и у всех живых организмов, закодирована в виде последовательности нуклеотидов в ДНК и несет информацию о структуре белков. Бактериальные клетки не содержат таких органелл, как хлоропласты (специализированные для фотосинтеза) и митохондрии (специализированные для клеточного дыхания и синтеза АТФ). Эти биохимические процессы происходят у бактерий в цитоплазме.[ ...]

Крайне малые размеры клеток являются характерной, но не главной особенностью бактерий. Все бактерии представлены особым типом клеток, лишенных истинного ядра, окруженного ядерной мембраной. Аналогом ядра у бактерий является нуклеоид - ДНК-содержащая плазма, не отграниченная от цитоплазмы мембраной. Кроме того, для бактериальных клеток характерны отсутствие митохондрий, хлоропла-стов, а также особое строение и состав мембранных структур и клеточных стенок. Организмы, в клетках которых отсутствует истинное ядро, называются прокариотами (доядер-ными) или протоцитами (т. е. организмами с примитивной организацией клеток).[ ...]

Микоплазменные клетки имеют овальную форму, а их размеры составляют около 0,1-0,25 нм в диаметре (рис. 43). Для них характерно наличие тонкой наружной плазматической мембраны (толщина - около 8 нм), которая окружает цитоплазму, содержащую молекулу ДНК, достаточную для кодирования около 800 разных белков, РНК разных типов, рибосом диаметром порядка 20 нм. В их цитоплазме содержатся различные включения в виде белков, гранул липидов и других соединений. Из-за недостаточной жесткости клеточкой мембраны микоплазмы проходят через бактериальные фильтры.[ ...]

Установлено, что на рибосомах происходят связывание активированных аминокислот и укладка их в полипептидную цепь в соответствии с генетической информацией, полученной из ядра через информационную (матричную) РНК (мРНК), которая как бы считывает соответствующую информацию с ДНК и передает ее на рибосомы. Целый ряд белков синтезирован на изолированных рибосомах и при этом отмечено включение в них меченых аминокислот. Роль матрицы в белковом синтезе выполняет мРНК, которая прикрепляется к рибосоме. На поверхности последней происходит взаимодействие между комплексом аминокислот, транспортной РНК, несущей очередную аминокислоту, и нуклеотидной последовательностью информационной РНК, которая функционирует на рибосоме однократно и после синтеза полипептидной цепи распадается, а вновь синтезированный белок накапливается в рибосомах. В бактериальной клетке при периоде регенерации 90 мин скорость кругооборота мРНК достигает 4-6 с.[ ...]

Цитоплазма представляет собой коллоидный раствор, дисперсной фазой которого являются сложные белковые соединения и вещества, близкие к жирам, а дисперсионной средой - вода. У некоторых форм бактерий в цитоплазме содержатся включения - капельки жира, серы, гликогена и др. Постоянными составляющими бактериальных клеток являются особые выросты цитоплазматической мембраны - мезосомы, в которых содержатся ферментные окислительно-восстановительные системы. В этих образованиях идут в основном процессы, связанные с дыханием бактерий. В мелких включениях - рибосомах, содержащих рибонуклеиновую кислоту, осуществляется биосинтез белка. Большинство видов бактерий не имеет обособленного ядра. Ядерное вещество, представленное ДНК, у них не отделено от цитоплазмы и образует нуклеоид. Транспортировка веществ, необходимых для жизнедеятельности клетки, и отвод продуктов обмена осуществляется по особым каналам и полостям, отделенным от цитоплазмы мембраной, имеющей такое же строение, как и цитоплазматическая. Это структурное образование называется эндоплазматической сетью (ретикулум).[ ...]

Представление об изменчивости и наследственности бактерий нельзя составить без знания некоторых положений молекулярной генетики прокариотической клетки. В основе процессов приспособления микробных культур к изменяющимся экологическим условиям лежат изменчивость и наследственность, являющиеся разделами генетики бактерий. При изложении цитологии бактериальной клетки уже рассматривалась структура ДНК и РНК и их роль в жизни клетки. Характерное строение ДНК сохраняется у каждого вида и передается потомству из поколения в поколение, как и другие признаки. ДНК бактерий представляет собой двунитчатую спираль, замыкающуюся в кольцо. Кольчатая нить ДНК бактерий, расположенная в ну-клеоиде, не содержит белка. Такое кольцо ДНК соответствует хромосоме эукариотической клетки. Известно, что в хромосоме эукариотических клеток, кроме ДНК, всегда содержится белковый компонент. Отсюда следует, что понятие хромосомы у эукариотов несколько отлично от понятия хромосомы бактерий. Нить ДНК, представляющая собой хромосому бактерий, разумеется, у разных видов различается. Сахарофосфатный компонент ДНК У всех видов бактерий одинаков; расположение азотистых оснований и их комбинация, напротив, различаются у разных видов.[ ...]

Все возрастающее беспорядочное применение антибиотиков в животноводстве, которые используются в малых дозах как стимуляторы роста, а также в качестве превентивной меры против вызванных стрессом желудочно-кишечных расстройств у животных на фермах, приводит к все более широкому распространению в микробных популяциях R-фактора устойчивости к антибиотикам, передающегося от одной бактериальной клетки к другой при конъюгации. Передача происходит через плазмиду, которая представляет собой кольцевую экстрахромосомную ДНК, способную к репликации.[ ...]

В противоположность вирулентным фагам, известны так называемые фаги умеренного действия, или просто умеренные фаги. Типичным представителем таких фагов является фаг X, который тоже использовался и используется в качестве экспериментальной модели для выяснения многих вопросов молекулярной генетики. Фагу X присущи два важных свойства. Подобно вирулентным фагам он может инфицировать бактериальные клетки, размножаться вегетативно, продуцируя в клетках сотни копий и лизировать клетки С освобождением зрелых фагочастиц. Однако ДНК этого фага может включаться в бактериальную хромосому, превращаясь в профаг. При этом происходит так называемая лизогенизация бактерий, а бактерии, содержащие профаг, называют лизогенными. Лизогенные бактериальные клетки могут обладать профагом бесконечно долгое время, при этом не лизируясь. Лизис с освобождением новых фагочастиц отмечается после воздействия на лизогенные бактерии какого-либо фактора, например УФ-излучения, которое индуцирует развитие профага в фаг. Изучение лизогенных бактерий позволило получить ряд новых данных о роли разных белков в действии фаговых генов.[ ...]

Геном хлоропластов ряда высших растений состоит из 120 генов. Хлоропластный геном очень сходен с бактериальным геномом как по организации, так и по функциям. В митохондриальном геноме человека, вероятно, отсутствуют интроны, но в ДНК хлоропластов некоторых высших растений, а также в ДНК митохондрий грибов интроны обнаружены. Считают, что хлоропластные геномы высших растений остаются без изменений примерно несколько миллионов лет. Возможно, что такая древность характерна и для митохондриальных геномов млекопитающих, включая человека.[ ...]

Современные схемы, иллюстрирующие работу генов, построены на основании логического анализа экспериментальных данных, полученных с помощью биохимических и генетических методов. Применение тонких электронно-микроскопических методов позволяет в буквальном смысле слова увидеть работу наследственного аппарата клетки. В последнее время получены электронно-микроскопические снимки, на которых видно, как на матрице бактериальной ДНК, в тех участках, где к ДНК прикреплены молекулы РНК-полимеразы (фермента, катализирующего транскрипцию ДНК в РНК), происходит синтез молекул и-РНК. Нити и-РНК, расположенные перпендикулярно к линейной молекуле ДНК, продвигаются вдоль матрицы и увеличиваются в длине. По мере удлинения нитей РНК к ним присоединяются рибосомы, которые, продвигаясь, в свою очередь, вдоль нити РНК по направлению к ДНК, ведут синтез белка.[ ...]

Трансдукция - это перенос генетического материала от бактерии-донора к бактерии-реципиенту с помощью фага. Впервые явление трансдукции было открыто в 1951 г. Ледербергом с сотрудниками у Salmonella typhimurium. Сейчас различают неспецифическую и специфическую трансдукции. При неспецифической трансдукции возможен перенос фагом любого признака от бактерии-донора к бактерии-реципиенту. Перенос осуществляется только умеренными (невирулентными) фагами. Умеренные фаги способны заражать бактерии, однако не размножаются в них и не вызывают лизиса, а включаются в ДНК бактериальной клетки и в таком неинфекционном состоянии в виде так называемого профага передаются от клетки к клетке при размножении. Культуры бактерий, содержащие профаг, называются лизогенными. В этих культурах с небольшой частотой (в одной из 102 - 105 клеток) наблюдается спонтанное размножение фага и происходит лизис клетки с освобождением фаговых частиц, обнаруживаемых с помощью бактерий-индикаторов, для которых такой фаг вирулентен.[ ...]

Опыты проводили на трехкамерной ячейке, состоящей из центральной рабочей и двух электродных камер. В рабочую камеру размером 25 X 7 X 37 мм (длина X ширина X высота), отделенную от электродных целлофановыми мембранами, помещали 750 мг ваты. Через нее снизу вверх подавали с постоянной скоростью исходный раствор исследуемых веществ. За содержанием соединений в исходных, подаваемых в рабочую камеру растворах (С0), и в растворах, выходящих из камеры (Ci), следили по максимумам поглощения белков и нуклеиновых кислот в диапазоне волновых чисел (35,5-38) X Ю3 см-1 с помощью УФ-спектрофотометра Specord UV-VIS. Электродные камеры заполняли гранулированным активированным углем и через них отдельным протоком пропускали дистиллированную воду.

Именительный вокативный.

Основные Значения Именительного Падежа

Именительный падеж имеет следующие значения:

именительный субъектный;

существительное в этом значении обозначает предмет речи, субъект (производитель) действия, носителя признака, в предложении является подлежащим: Мама моет раму. Дом строится рабочими.

именительный предикативный;

существительное в этом значении обозначает признак предмета речи, в предложении является сказуемым: Москва – столица Российской Федерации. Мой брат – банкир.

именительный объектный;

существительное обозначает объект действия, субъект действия при этом выражен творительным падежом, указанное значение встречается в страдательной конструкции: Дом строится рабочими. Книга издается издательством.

именительный аппозитивный;

существительное выполняет функцию несогласованного определения (приложения): Там рысь, охотница седая, бежит, на лапы припадая.

Существительное является обращением, не выполняет синтаксической функции: Люди, будьте внимательны друг к другу.

Парадигма считается полной, если существительное имеет 12 падежных форм: 6 форм единственного и 6 форм множественного числа; поскольку изменяться по числам свойственно только конкретным существительным, другие ЛГР имеют неполную парадигму по числу.

Перитрихи. Жгутики расположены по всей поверхности клеточной стенки (бактерии семейств Enterobacteriaceae и Bacillaceae).

Монотрихи. Один толстый жгутик на одном конце (вибрионы).

Политрихи. Пучок из 2-50 жгутиков, видимый как одиночный.

Полярные жгутики прикреплены к одному или обеим концам бактерии. Лофотрихи – пучок жгутиков на одном конце бактерии (Pseudomonas). Амфитрихи – биполярно расположенные пучки (Spirillum).

Микроворсинки (пили, фимбрии) это белковые волоски (от 10 до нескольких тысяч) толщиной 3-25 нм и длиной до 12 мкм.

А. Обыкновенные пили. Многие грамотрицательные бактерии имеют длинные и тонкие пили (фимбрии), начинающиеся на цитоплазматической мембране и пронизывающие клеточную стенку. Они образованы белками одного типа, молекулы которых формируют спиральную нить. Их основная функция – прикрепление бактерий к субстратам , например поверхности слизистых оболочек, что является важным фактором колонизации и инфицирования. Кроме того, увеличение площади поверхности бактериальной клетки дает ей дополнительные преимущества в утилизации питательных веществ окружающей среды.

Б. F-пили (фактор фертильности) – специальные образования, участвующие в коньюгации бактерий. Имеют вид полых белковых трубочек длиной 0,5-10 мкм. Их образование кодируется плазмидами.


Клеточная оболочка большинства бактерий состоит из клеточной стенки и находящейся под ней цитоплазматической мембраны.

Клеточная стенка бактерий тонкая, эластичная и ригидная, может полностью отсутствовать у некоторых бактерий (например, L-форм и микоплазм). Клеточная стенка защищает бактерии от внешних воздействий, придает им характерную форму, через нее осуществляется транспорт питательных веществ и выделение метаболитов. На ее поверхности располагаются разнообразные рецепторы для бактериофагов, бактериоцинов и различных химических веществ. КС поддерживает постоянство внутренней среды и выдерживает значительное давление изнутри (например, парциальное давление внутриклеточных веществ грамположительных бактерий может достигать 30 атмосфер). Структура и состав элементов КС определяют способность воспринимать красители, т.е. их тинкториальные свойства . В основу одного из основных принципов дифференциации бактерий положена способность воспринимать и удерживать внутри клетки красящий комплекс генцианового фиолетового с йодом, либо терять его после обработки спиртом (окраска по Граму). Соответственно выделяют грамположительные (окрашиваются в фиолетово0пурпурный цвет) и грамотрицательные (красного цвета).

Основной компонент КС бактерий – пептидогликан (муреин). Пептидогликана относительно больше в грамположительных бактериях: доля муреиновой сети толщиной примерно в 40 слоев составляет 30-70% сухой массы КС. Грамотрицательные бактерии содержат всего 1-2 слоя муреина, составляющего около 10% сухой массы КС.

Пептидогликан представлен полимерными молекулами, состоящими из повторяющихся дисахаридных групп, в образовании которых участвуют N-ацетилглюкозамин и N-ацетилмурамовая кислота , последняя связывает дисахариды с олигопептидами (из 20 известных аминокислот в КС бактерий найдены лишь 4 – глутаминовая кислота, глицин, лизин и аланин). В состав КС бактерий также входят уникальные аминокислоты, например диаминопимелиновая и D-изомеры глутаминовой кислоты и аланина. Лизоцим гидролизует пептидогликан, расщепляя гликозидные связи между N-ацетилглюкозамином и N-ацетилмурамовой кислотой.

Перекрестное связывание пептидогликана заключается в образовании пептидной связи между терминальным остатком боковой пептидной цепи (обычно D-аланином) с предпоследним остатком примыкающей боковой цепи (L-лизином или диаминопимелиновой кислотой).

Грамположительные бактерии имеют несложно организованную, но мощную КС, состоящую преимущественно из множественных слоев пептидогликана, включающих уникальные полимеры тейхоевых кислот – цепи из 8-50 остатков глицерина или рибита, связанные между собой фосфатными мостиками.

Грамотрицательные бактерии имеют более тонкую (по сравнению с грамположительными бактериями) КС, включающую бимолекулярный слой пептидогликана и не содержащую тейхоевой кислоты.

Поверх пептидогликанового слоя расположена дополнительная, или внешняя мембрана. Её толщина превышает размеры монослоя пептидогликана.

Компоненты внешней мембраны: фосфолипидный бислой, белки, полисахариды и ЛПС, расположенные мозаично.

Фосфолипидный бислой прикреплен к пептидогликану липопротеинами, пересекающими периплазматическое пространство.

Белки , в том числе порины , образующие трансмембранные каналы, вовлечены в транспорт ионов и гидрофильных соединений из внешней среды в периплазму.

ЛПС образован из липидной части (липид А), насыщенной полисахаридами сердцевины и боковых полисахаридных цепей. Полисахаридная часть ЛПС обладает иммуногенными свойствами и называется О-Аг. Липидная часть термоустойчива и отвечает за биологические эффекты эндотоксина.

Аутолизины . КС бактерий содержат аутолизины – ферменты, растворяющие пептидогликановый слой. Их активность необходима для процессов роста КС, разделения клеток, споруляции и достижения состояния компетентности при трансформации.

Цитоплазматическая мембрана (иначе клеточная, или плазматическая мембрана) – физический, осмотический и метаболический барьер между внутренним содержимым бактериальной клетки и внешней средой. ЦПМ имеет сложную трехслойную структуру, для неё характерна выраженная избирательная проницаемость. У некоторых бактерий между ЦПМ и КС располагается периплазматическое пространство – полость, заполненная ферментами (рибонуклеазы, фосфатазы, пенициллиназы и др.), у грамотрицательных бактерий ферменты свободно изливаются в окружающую среду. ЦПМ бактерий состоит из белков, липидов, углеводов и РНК.

Белки ЦПМ разделяют на структурные и функциональные. Последние включают ферменты, участвующие в синтетических реакциях на поверхности мембраны, окислительно-восстановительных процессах, а также некоторые специальные энзимы (например, пермеазы ).

В ЦПМ расположена система электронного транспорта бактерий, обеспечивающая энергетические потребности.

Мезосомы – сложные инвагинации ЦПМ, функции которых до сих пор полностью не установлены. Известно, что они ассоциированы с нуклеоидом и имеют отношение к делению клеток и спорообразованию.

Удаление КС, защищающей прилежащую ЦПМ, приводит к лизису бактерий либо к образованию протопластов и сферопластов, различающихся по происхождению (из грамположительных или грамотрицательных бактерий соответственно), а также по осмотической устойчивости. Пребывая в изотонической среде, бактерии, лишенные КС, способны поглощать О 2 и выделять СО 2 , а также размножаться.

L-формы. Под влиянием некоторых внешних факторов бактерии способны терять КС, образуя L-формы (названы в честь Института им. Д.Листера, где были впервые выделены). Подобная трансформация может быть спонтанной (например, у хламидий) или индуцированной (например, под действием антибиотиков). Выделяют стабильные и нестабильные L-формы. Первые не способны к реверсии, а вторые реверсируют в исходные формы после удаления причинного фактора.

Представители группы микоплазм (класс Mollicutes) не имеют клеточных стенок.

Цитоплазма бактерий – матрикс для реализации жизненно важных реакций – отделена от КС цитоплпзматической мембраной. Цитоплазма большинства бактерий содержит ДНК, рибосомы и запасные гранулы; остальное пространство занимает коллоидная фаза, её основные составляющие – растворимые ферменты и РНК (матричные и транспортные РНК). Разнообразные органеллы, характерные для эукариотических клеток, у бактерий отсутствуют, а их функции выполняет бактериальная ЦПМ.

ДНК . В бактериальной клетке нет ядерной мембраны. ДНК сконцентрирована в цитоплазме в виде клубка, называемого нуклеоидом, или генофором.

Генофор бактерий представлен двойной спиральной кольцевой ковалентно замкнутой суперспирализованной молекулой ДНК, составляющей 2-3% сухой массы клетки (более 10% по объему). Длина контура молекулы варьирует от 0,25 до 3 мм. Суперспираль бактериальной ДНК не содержит гистонов. Объем генетической информации, кодируемой в генофоре, различается между видами (например, геном Escherichia coli кодирует примерно 4 000 различных полипептидов).

Плазмиды . У бактерий может присутствовать дополнительная молекула ДНК в виде внехромосомных элементов либо интегрированных в генофор. Подобные включения называют плазмидами (соответственно эписомальные или интегрированные ). Для ДНК эписом тоже характерна кольцевая форма, но по размеру эписомы меньше бактериальной хромосомы. Плазмиды несут ряд различных генов и часто определяют вирулентность бактерий, но информация, содержащаяся в плазмидах, не является абсолютно необходимой для бактериальной клетки.

Рибосомы бактерий – сложные глобулярные образования, состоящие из различных молекул РНК и многих связанных с ними белков. Всё образование функционирует как локус синтеза белков.

70S рибосомы . Диаметр бактериальных рибосом около 20 нм. Коэффициент седиментации – 70S (единиц Сведберга). Рибосомы бактерий состоят из двух субъединиц с коэффициентом седиментации 50S для одной и 30S для другой. Объединение субъединиц происходит перед началом синтеза белка. В зависимости от интенсивности роста бактериальная клетка может содержать от 5 000 до 50 000 рибосом.

Бактериостатические антибиотики (стрептомицин, тетрациклин, левомицетин) ингибируют синтез белка, блокируя некоторые метаболические процессы, протекающие в рибосомах бактерий.

Запасные гранулы содержат временный избыток метаболитов. Наличие и количество гранул изменяются в зависимости от вида бактерий и их метаболической активности. В виде гранул могут запасаться полисахариды (крахмал, гликоген, гранулёза), жиры (триглицериды, сходные с жирами высших животных, запасаются у дрожжей рода Candida; воска – у микобактерий и нокардий; полимеры β-оксимасляной кислоты – например в клетках Bacillus megaterium), полифосфаты (например, волютин, впервые обнаруженный у Spirillum volutans), сера (у бактерий, окисляющих сульфид до сульфата), белки – например, протоксин (у Bacillus thuringiensis и родственных видов).


Носителем генетической информации бактериальных клеток является ДНК. Она представляет собой двойную спираль, состоящую из двух полинуклеотидных цепочек. ДНК сравнивают с винтовой лестницей и с двойным электрическим кабелем. Остов ДНК состоит из фосфатных групп и дезоксирибозы. Полипептидные цепи соединены между собой водородными связями, которые удерживают друг с другом комплементарные азотистые основания. Строение ДНК бактерий аналогично таковому клеток эукариотического типа (растений, животных, грибов). В отличие от бактерий у вирусов геном представлен одной нуклеиновой кислотой – ДНК или РНК. Бактериальные клетки, кроме ДНК, могут иметь генетически полноценные образования функционирующие автономно. Необходимо подчеркнуть, что носителями наследственности бактерий кроме ДНК являются плазмиды и эписомы. В этой связи, любая структура бактериальной клетки, способна к саморепликации, называется репликон, т. е. репликонами бактерий являются нуклеотид, плазмиды, эписомы. Плазмиды не связаны с нуклеотидом, они пребывают в цитоплазме клетки автономно, эписомы могут находиться в свободном состоянии, но чаще всего они реплицируются вместе с ДНК.

Бактериальная хромосома представлена одной двунитевой молекулой ДНК кольцевидной формы и называется нуклеотидом. Длина нуклеотида в растянутом виде составляет примерно 1 мм. Нуклеотид – эквивалент ядра. Расположен он в центре бактерии. В отличие от эукариот ядро бактерий не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Нуклеотид можно выявить в световом микроскопе. Для этого надо окрасить клетку специальными методами: по Фельгену или по Романовскому-Гимзе. Электронно-микроскопическое исследование показало, что один конец ДНК прикреплен к клеточной мембране. Видимо, это необходимо для процесса репликации ДНК.

Выращивани бактерий в пробирке. Фото: Tess Watson

В отличие от клеток эукариот у прокариот отсутствуют митохондрии, аппарат Гольджи и эндоплазмотическая сеть.

Каждая нить ДНК состоит из звеньев – нуклеотидов. В состав нуклеотида входит одно из азотистых оснований (аденин, гуанин, тимин или цитозин) дезоксирибоза и фосфорная кислота. Приблизительно 1500 нуклеотидов составляют ген средней величины. Таким образом, ген представляет собой определенный участок ДНК, ответственный за проявление и развитие конкретного признака. Гены в ДНК расположены линейно, они дискретны, способны к саморепликации. Последовательность аминокислот в синтезируемом белке, определяется последовательностью нуклеотидов в гене.

С точки зрения функциональной гены подразделяют на структурные, регуляторы, промоторы и гены-операторы.

Структурные гены, представляют собой гены, обуславливающие синтез ферментов, участвующих в биологических реакциях и в формировании клеточных структур.

Гены-регуляторы ответственны за синтез белков, регулирующих обмен веществ. Эти гены могут влиять на деятельность структурных генов.

Гены-промоторы детерминируют начало транскрипции. Они представляют собой участок ДНК, который распознает ДНК-зависимый РНК-полимеразой.

Гены-операторы являются посредниками между структурными генами, промоторной областью и генами-регуляторами.

Совокупность генов-регуляторов, промоторов, операторов и структурных генов называют опероном. Следовательно оперон является функциональной генетической единицей, несущей ответственность за проявление определенного признака микроорганизмов.

Различают индуцибельные и репрессибельные опероны. Например, индуцибельным опероном является Lac-оперон, гены которого контролируют синтез ферментов, утилизирующих лактозу в микробной клетке. Если клетка не нуждается в лактозе, оперон поддерживается в неактивном состоянии и, наоборот.

Примером репрессибельного оперона может служить триптофановый оперон, обеспечивающий продукцию триптофана. Этот оперон обычно постоянно функционирует, а его белок-репрессор находится в пассивном состоянии. В случае повышения содержания триптофана в клетке аминокислота вступает в связь с репрессором и активизирует его. Репрессор ингибирует работающий оперон и прерывает синтез триптофана.

Важнейшее свойство ДНК – способность к репликации. Репликация может протекать по тета-типу и сигма-типу. Репликация ДНК по тета-типу начинается в определенной точке в виде «вздутия» и распространяется вдоль молекулы в двух направлениях, проходя через промежуточную структуру, напоминающую греческую букву тета. При этом типе репликации сохраняется одна из цепей исходной молекулы ДНК, а вторая синтезируется из нуклеотидов.

Репликация ДНК по сигма-типу осуществляется через промежуточную структуру, напоминающую греческую букву сигма, откуда и название этого типа. Этот тип репликации наблюдается в процессе коньюгации бактерий и некоторых фагов. При этом типе репликации происходит достраивание обоих нитей ДНК до двухцепочной ДНК.

Геном бактерий выполняет следующие функции:

· обеспечивает передачу биологических свойств по наследству;

· программирует синтез бактериального белка с определенными свойствами;

· участвует в процессах изменчивости бактерий;

· обеспечивает сохранение индивидуальности вида;

· детерминирует множественную устойчивость к ряду лекарственных веществ.



Хромосомы бактерий располагаются свободно в цитоплазме, не ограничены мембранами, но во всех случаях ДНК бактерии связана с рецепторами на мембране.

Бактерии гаплоидны, содержание ДНК не постоянно, может достигать 2, 4, 6, 8 - хромосом (у других организмов оно постоянно и удваивается только перед делением).

Передача генетической информации идет не только по вертикале (материнская>дочерняя), но и по горизонтали (конъюгация, трансформация)

Помимо хромосомного генома имеется не хромосомный генетический материал, который называется плазмидным геномом (эписомы, внехромосомные факторы наследственности). Это наделяет клетку дополнительными биологическими свойствами.

Содержание ДНК у бактерий зависит от условий их роста или от времени клеточного цикла бактерии, которые осуществляется каждые 20-30 минут, поэтому и количество может соответствовать (4,6,8) и это сопровождается увеличением количества рибосом (этапы транскрипции, трансляции идут одновременно, возможность регулировать скорость размножения главное условие сохранения вида.

Особенности репликации.

Вегетативная репликация: обуславливает передачу информации по вертикали, контролируется хромосомными и плазмидными генами.

Конъюгативная репликации: перенос материала по горизонтали и контролируется только плазмидными генами, при этом происходит достройка нити ДНК комплиментарной нити от донора к реципиенту.

Репаративная репликация: механизм при котором устраняется из ДНК поврежденный участок

Стркуктурно-функциональной едициней является оперон - группа структурных генов связанных с особым геном оператором, он управляет всей группой структурных генов и идет как самостоятельная единица, находится под контролем гена модулятора. В хромосоме гены распределяется друг за другом контролируя разные процессы, но законченный результат можно получить выбирая не последовательно (как игра на пианино).

Хромосомная карта бактерий

Хромосомы бактерий имеют кольцевую форму, гены располагаются линейно, их можно последовательно расположить. Локализация генов определяют в минутах их переноса, и хромосомная карта это 0-100 минут.

Определение локализации гена на хромосоме называется картированием, а их расположение хромосомной картой масштаб которой в минутах. В настоящее время есть карты: кишечной палочки.

Изучение организации генома бактерий.

Проводится с помощью ферментов - рестриктаз способные расщепить ДНК в специфических участках, которые они комплиментарны. В настоящее время известно более 100 рестриктаз. С помощью них можно получить рестрикционные фрагменты ДНК > рестрикционный анализ. Сравнение рестрикционных фрагментов и называется рестрикционным анализом, который может быть использован для идентификации. Делают копии цепей ДНК, которые имеют липкие концы с помощью которых фрагменты вновь могут образовывать кольца. Именно за счет липких концов можно получать между разными фрагментами ДНК - рекомбинантные ДНК. Если эти фрагменты получены с помощью одной рестриктазы они могут вступать во взаимодействия между собой.

Метод клонирования. Выделенный фрагмент ДНК с помощью рекомбинантных молекул вводится в самореплицирующую генетическую структуру - в плазмиду, вирус и дальше они выполняют роль вектора для клонирования. Их сшивают с фрагментом ДНК - геномом, который будет размножаться в составе плазмилы или в составе геном бактериальной клетки. Такие гибридные ДНК также можно выделить из клетки за счет рестрикции - вырезания. С помощью клонирования можно получать большое количество копий любого фрагмента ДНК, который можно метить радиоактивной меткой.

Метод сегвинирования. Используют для определения последовательности расположение ДНК в клонируемом фрагменте ДНК. Методы секвинирования и клонирования это методы помогающие изучить геномы в т. ч. геном человека (2004).

Плазмидный геном бактериальной клетки.

Плазмиды - фрагменты ДНК с небольшой молекулярной массой, несут от 40 до 50 генов. Они выполняют также регуляторную и структурную функцию. Плазмиды могут располагаться либо в цитоплазме, могут иметь кольцевую структуру. Могут находится в интегрированном состоянии хромосомы (эписомы).

Свойства плазмид:

1. Не обязательные генетические элементы бактерий (дополнительные).

2. Обладают саморепликацией и автономностью, независимостью от хромосомы клетки. ДНК бактерии им не управляет.

3. Склонны к трансмиссии как по вертикали, так и по горизонтали обеспечивая при этом гегетическую изменчивость бактерий.

Виды плазмид:

F-фактор - кольцевая молекула. Ее гены кодируют образование половых ворсинок, размножение бактерий, скорость размножения с ней связывают конъюгацию, участвует в горизонтальной передаче генетического материала и передаются различные свойства: устойчивость к антибиотикам, лактозо положительность.

R-фактор - детерминирует продукцию фермента в-лактамызы > устойчивость к антибиотикам. В составе этой плазмиды может быть специальный tra-оперон (ген отвечающий за перенос) > плазмида легко передается.

Hly - плазмида связана с продукцией гемотоксина > более токсигенные бактерии.

Col-фактор отвечает за продукцию колицинов (антибиотикоподобные вещества) обеспечивающих преимущество бактерий перед другими.

Плазмиды био деградации: участвуют в расщепдлении веществ загрязняющих окружающей среды.

Плазмида умеренного фага - фаг который способен распознать, внедрится, в клетку, но вызвать лизис бактерии вызвать не может. Может покидать клетку, захватывать часть генетического материала клетки и внедряясь в другую клетку участвует в переносе генетического материала (трансдукция)

Плазмиды есть конъюгативные (способные к переносу, имеющие в своем составе ген переноса), неконъюгативные (не участвуют в рекомбинации). По совместимости есть несовместимые друг с другом, совместимые.

Транспазоны, IS-последовательности.

Относятся к дополнительным генетичесим элементам

Th-маленькие участки ДНК (прыгающие) - в составе могут быть Rгены. Могут находится как в составе ДНК, так и в составе плазмид. Странспазонами связны мутации бактерии поскольку они могут перемещаться и вызывать мутации типа делеции, инверсии, дупликации.. Транспазоны ограничены с двух сторон IS-последовательностями.

IS-фрагменты - маленькие фрагменты ДНК, повторяющиеся, не способны к репродукции в свободном состоянии не участвуют. Основные функции: регуляторные (способны включить - выключить ген). Координируют взаимодействие транспазонов плазмид, фагов как между собой так и с хромосомой клетки хозяина.

Изменчивость бактерий.

Модификационная: адаптивная реакция организмов в ответ на условия внешней среды. Могут изменять морфологические, культуральные, ферментативные свойства.

Генотипическая: затрагивает генотип клетки:

Ш Мутационная - изменение первичной структуры ДНК, могут быть связаны с выпадением нуклеатида, делецией могут носить характер инверсии. Могут быть хромосомные, плазмидные. Могут быть спонтанные, индуцированные. Значение эволционные изменение, сопроваждается селекцией.

Ш Комбинативная: трансформация - передача генетического материала в виде раствора ДНК донора к реципиенту, трансдукция - перенос генетического материала от донора к реципиенту с помощью умеренных фагов (неспецифическая, специфическая), конъюгация - передача генетического материала от донора имеющего F-фактор к реципиенту через половые ворсинки с образованием новых штаммов.

Значение генетики в эволюции бактерии.

Особенности генетики вирусов.

1. Молекулярная масса геном вирусов 10 6 меньше чем масса эукариотической клетки.

2. Организация генетического аппарата такая же

3. Генов от нескольких единиц до десятков.

4. Принцип 1 ген - молекул РНК - 1 белок у вирусных ДНК нарушен и иРНК вирусов может направлять синтез 2 и более белков.

Способы увеличения генетической информации у вируса.

1. Двукратное считывание одной и той же и РНК, но с другого кодона.

2. Сдвиг рамки трансляции

3. Сплайсинг (вырез интронов)

4. Транскрипция с перекрывающихся областей нуклеиновой кислоты > размывается границы гена и понятие ген приобретает функциональное значение.

Виды изменчивости у вирусов.

Модификационная. В основном для вирусов определяет клетка хозяина. Модификация затрагивает суперкапсид.

Генотипическая. Мутационная, то есть изменение в первичной структуре нуклеотидов.

Рекомбинативная. Происходит при одновременном заражении клетки хозяина двумя или более вирусами, происходит обмен генами > образуются рекомбинантные штаммы вирусов, которые содержат гены 2 и более штаммов.

Генетическая реактивация. Процесс при котором вирионы дополняют друг друга в следствии перераспределения генов во время их репликации. Это наблюдается у вирусов с фрагментарным геномом. При скрещивании таких вирусов происходит образование полноценных единиц.

Комплементация (дополнение). Не генетический процесс при котором вирус снабжает своего партнера (как правило дефектного) недостающими компонентами белка, а не нуклеиновыми кислотами. Характерна для многих вирусов - аденовирусы могут культивироваться только в присутсвии SV 40 - вирус. Вирус гепатита В является помощником для д - вируса (HDV).

Фенотипическое смешивание. Наблюдается при совместном культивировании двух вирусов наблюдаем, что геном одного вируса заключается в капсид другого вируса. Генотип при этом не меняется